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a b s t r a c t 

The dual-process theory of action control postulates that there are two competitive and complementary mecha- 

nisms that control our behavior: a goal-directed system that executes deliberate actions, explicitly aimed toward 

a particular outcome, and a habitual system that autonomously execute well-learned actions, typically following 

an encounter with a previously associated cue. In line with the dual-process theory, animal studies have provided 

convincing evidence for dissociable neural mechanisms, mainly manifested in cortico-striatal regions, involved in 

goal-directed and habitual action control. While substantial progress has been made in characterizing the neural 

mechanism underlying habit learning in animals, we still lack knowledge on how habits are formed and main- 

tained in the human brain. Thus far only one study, conducted more than a decade ago by Tricomi et al. (2009), 

has been able to induce habitual behavior in humans via extensive training. This study also implicated the pos- 

terior putamen in the process, using functional magnetic resonance imaging (fMRI). However, recent attempts to 

replicate the behavioral results of this study were not successful. This leaves the research of human habits, and 

particularly the research of their formation through extensive repetition, as well as their neural basis, limited 

and far behind the animal research in the field. This motivated us to (1) attempt to replicate the behavioral and 

imaging main findings of Tricomi et al., (2) identify further functional and microstructural neural modifications 

associated with habit formation and manifestation, and (3) investigate the relationships between functional and 

structural plasticity and individual differences in habit expression. To this end, in this registered report we used 

Tricomi et al.’s free-operant task along with multi-modal MRI methods in a well-powered sample (n = 123). In 

this task participants’ sensitivity to outcome devaluation (an index of goal-directed/habitual action control) is 

tested following either short or extensive training. In contrast to our hypothesis, we were not able to demonstrate 

habit formation as a function of training duration nor were we able to relate any functional or microstructural 

plasticity in the putamen with individual habit expression. We found that a pattern of increased activations in the 

left head of caudate that reoccurred across each day’s training was associated with goal directed behavior and 

that increased processing of devalued cues in low-level visual regions was indicative of goal-directed behavior. 

In a follow-up exploratory analysis comparing habitual and goal-directed subgroups within each experimental 

group, we found that elevated activations in frontoparietal regions during early stages of training, as well as 

increased reactivity towards still-valued cues in somatosensory and superior parietal regions, were found in in- 

dividuals that were more inclined to perform goal-directed behavior (compared with more habitual individuals). 

Taken together, regions commonly implicated in goal-directed behavior were most predictive of individual habit 

expression. Finally, we also found that differential patterns of training-related microstructural plasticity, as mea- 
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. Introduction 

Action control, acquired through instrumental learning, is hypothe-

ized to be determined by an interplay between two distinct systems

 De Wit and Dickinson, 2009 , Dickinson, 1985 ): one responsible for

oal-directed behaviors and another that forms and executes habitual

ehaviors. Goal-directed behavior relies on a relatively careful consid-

ration of the available information and is particularly dependent on the

ssociation between a response and its outcome (R-O) ( Dickinson, 1985 ,

alleine and O’Doherty, 2010 ). Therefore, it allows executing carefully

lanned actions and the flexibility to adjust them in order to maxi-

ize desired outcomes when circumstances change (e.g., ( Valentin et

l., 2007 )). However, this behavior is cognitively taxing. In contrast,

abitual behavior is considered to be automatic and is cognitively un-

emanding ( Dickinson, 1985 , Graybiel, 2008 ). It relies on the associa-

ion between a stimulus and a response (S-R) and is thus relatively fixed

nd insensitive to changes in outcome value. Newly acquired instru-

ental actions are at first goal-directed and are sensitive to changes in

utcome value. However, with extensive training, namely through be-

avioral repetition, a qualitative shift emerges as responding becomes

utonomous and is automatically triggered by an associated stimulus,

egardless of changes in outcome value or in R-O contingency ( Adams,

982 , Dickinson et al., 1995 ) (for review see ( Balleine and O’Doherty,

010 )). Notably, the vast majority of the evidence supporting this dual-

ystem account of action control and its dynamics has been accumulated

rom animal research ( Corbit, 2018 ) (mostly rats), whereas it is yet to

e well-established and characterized in humans. 

Habitual action control is typically adaptive, liberating mental re-

ources while automating usually-beneficial actions. However, an im-

alance with the goal-directed system in the “struggle ” for action con-

rol and more specifically, overreliance on the habitual system, consti-

utes a key feature in several psychopathologies. Such malfunction has

een implicated in addiction ( McKim et al., 2016 , Hogarth et al., 2012 ,

ogarth and Chase, 2011 , Sjoerds et al., 2013 , Ersche et al., 2016 ),

bsessive-compulsive disorder (OCD) ( Gillan et al., 2011 , Gillan et al.,

015 , Snorrason et al., 2016 , Gillan et al., 2014 ), schizophrenia ( Morris

t al., 2015 ), autism ( Alvares et al., 2016 ), social anxiety ( Alvares et al.,

016 , Alvares et al., 2014 ), Tourette syndrome ( Berman et al., 2016 ) and

besity ( Horstmann et al., 2015 ). Thus, characterizing the interplay be-

ween these two systems and specifically the shift from goal-directed to

abitual control, as well as understanding the underlying neural mech-

nisms, are of great importance for psychotherapeutical and clinical in-

erventions. 

A substantial landmark in the habit learning field has been the devel-

pment of the reinforcer devaluation paradigm in rodents ( Dickinson,

985 ). This paradigm successfully dissociates goal-directed from habit-

al behavior, based on whether a learned action had become insen-

itive to outcome devaluation (usually through food satiation or con-

itioned taste aversion). It became a pivotal measurement method of

abits, yielding fruitful insights in animal research. A major contribu-

ion of this paradigm has been its capacity to demonstrate the transition

rom goal-directed behavior (sensitive to outcome devaluation) to habit-

al behavior (insensitive to outcome devaluation), as a result of exten-

ive instrumental training ( Adams, 1982 ). Different human paradigms,

imed to utilize the devaluation sensitivity criterion, have been devel-

ped since (e.g. ( Valentin et al., 2007 , Hogarth et al., 2012 , Gillan et

l., 2014 , Alvares et al., 2016 , Tricomi et al., 2009 , Schwabe and Wolf,

009 , Liljeholm et al., 2015 , Reber et al., 2017 )). The majority of these

asks aimed to distinguish S-R from R-O action control to point at inter-
2 
brain dopaminergic regions were associated with habit expression. This work

ral dynamics involved in individual habit formation/expression and encourages

ew, more sensitive, procedures for experimental habit induction in humans. 

ndividual differences or pathologic group tendencies (e.g. ( Hogarth et

l., 2012 , Gillan et al., 2014 , Alvares et al., 2016 )), identify relevant

odulators (e.g. ( Schwabe and Wolf, 2009 )), or discern their neural

orrelates (e.g. ( Valentin et al., 2007 , Liljeholm et al., 2015 , Reber et

l., 2017 )). However, apart from the one study conducted by Tricomi et

l. ( Tricomi et al., 2009 ), habit learning, as acquired through behavioral

epetition, has not been clearly demonstrated. 

Neuroscientific research has identified distinct brain regions corre-

ponding with the formation and execution of goal-directed behavior

nd habits. In rodents, the dorsomedial striatum (DMS), the prelimbic

ortex (PL) and the nucleus accumbens are the main regions implicated

n goal-directed control ( Yin et al., 2005 , Yin et al., 2005 , Corbit and

alleine, 2003 , Corbit et al., 2012 , Corbit et al., 2001 ). The execution of

abitual responding is particularly dependent on the dorsolateral stria-

um (DLS) ( Yin et al., 2004 , Yin et al., 2006 ), gradually gaining response-

ontrol across the course of learning ( Balleine and Ostlund, 2007 ). In

umans, homologous to the rodent DMS, the anterior caudate nucleus,

nd homologous to the PL, the ventromedial prefrontal cortex (vmPFC)

 Balleine and O’Doherty, 2010 ), were implicated in goal directed be-

avior ( Valentin et al., 2007 , Tricomi et al., 2009 , de Wit et al., 2009 ,

e Wit et al., 2012 , McNamee et al., 2015 ). In contrast, the research of

he neural mechanisms underlying habitual control in humans is lim-

ted. There is evidence that the human putamen is homologous to the

odent DLS in habitual action control ( Tricomi et al., 2009 , de Wit et

l., 2012 , McNamee et al., 2015 ). McNamee et al. implicated the poste-

ior putamen in stimulus-triggered actions, suggesting it has a specific

ole in habit-associated S-R encoding ( McNamee et al., 2015 ). De Wit

t al. found that elevated gray matter density in the posterior putamen

nd white matter tract strength between this region and the premotor

ortex are linked to individual tendency to habit-like performance ( de

it et al., 2012 ). However, thus far only Tricomi et al. ( Tricomi et al.,

009 ) implicated the posterior putamen in habit learning, using func-

ional magnetic resonance imaging (fMRI). 

Based on accumulated knowledge, demonstrating habit induction

n healthy humans and as follows, characterizing its underlying neural

echanisms, is still a considerable challenge. Although it was exten-

ively demonstrated in animals for decades, only the above-mentioned

rocedure by Tricomi et al. ( Tricomi et al., 2009 ) was able thus far to

emonstrate the shift from goal-directed to habitual control through ex-

ensive training in humans and point at relevant neural mechanisms.

owever, these prominent findings have yet to be successfully repli-

ated. Moreover, a recent study reported five failures in experimental

abit induction ( de Wit et al., 2018 ), two of which were attempts to

eplicate the behavioral findings of Tricomi et al. ( Tricomi et al., 2009 ).

hus, the reliability of the habit induction procedure utilized by Tri-

omi et al. ( Tricomi et al., 2009 ) is currently unclear. Furthermore, to

ate, there is no other paradigm that has been able to reliably induce

abits through extensive training in humans. Consequently, the neural

echanisms underlying the formation (through behavioral repetition)

nd manifestation of habits have yet to be characterized. 

The discrepancy in results across human research, the gap between

nimal and human literature on habits and the fact that habits are such

 fundamental feature of human behavior, motivated us to establish the

xperimental induction of habit learning and characterize its underlying

eural mechanisms in humans. 

In the current work we aimed to replicate and expand the findings

f Tricomi et al. ( Tricomi et al., 2009 ) with a well-powered sample us-

ng multi-modal MRI methods. We conducted a power analysis using

he fMRIPower tool ( Mumford and Nichols, 2008 ) of the effect demon-

trated by Tricomi et al. ( Tricomi et al., 2009 ) in the right putamen,
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s defined by the automated anatomical labeling (AAL) atlas ( Tzourio-

azoyer et al., 2002 ). This analysis yielded an n = 61 for the extensive

raining group where the effect in the posterior putamen was observed.

herefore, we aimed to obtain data from 122 valid participants: 61 in

ach of two groups, differ in their training duration: short vs. extensive.

part from the replication attempt of the Tricomi et al. ( Tricomi et al.,

009 ) findings, this well-powered sample also allowed us to test for fur-

her functional correlates with habit formation and manifestation (see

aterials and methods). Additionally, we used diffusion tensor imaging

DTI) scans to probe micro-structural brain plasticity related to habit

ormation. We chose to use this method as in recent years it has been

epeatedly shown that DTI indices can point at learning-induced neu-

oplasticity in gray matter regions ( Sagi et al., 2012 , Hofstetter et al.,

013 , Tavor et al., 2013 , Brodt et al., 2018 ). Finally, we constructed a

arametric index based on task performance, that measures the level of

ndividual habit expression and correlated this measure with structural

nd functional measurements to identify neural determinants of habit

ormation. Our target sample size was four times larger than the one

sed by Tricomi et al. ( Tricomi et al., 2009 ) and thus had the poten-

ial to reliably identify relevant effects at both the individual and group

evels that were not possible in the original study. 

.1. Hypothesis 

We hypothesized that extensive training will render responding ha-

itual. The study conducted by Tricomi et al. ( Tricomi et al., 2009 ) was

arried out in a considerably different environment than the unsuccess-

ul replication attempts of its behavioral findings ( de Wit et al., 2018 ).

he original study was performed inside an MRI scanner, whereas the

eplication attempts were performed in common behavioral settings.

ritically, such discrepancy with regard to the induction of habits, which

eavily rely on the associations between responses and cues and con-

exts, may have led to different behavioral effects. Factors that may

ave potentially biased the behavioral effect as a function of the differ-

nt environment include: (1) participants inside the MRI scanner may

xperience more stress which promotes habit formation ( Schwabe and

olf, 2009 ); (2) on the other hand, volunteers for MRI experiments may

e self-selected to have low rates of stress and anxiety, allowing the

anifestation of more goal-directed behavior following short training,

hereby sharpening the differential effect of short and extensive train-

ng on action control; (3) The unusual and salient context of the MRI

nvironment may impose S-R associations more robustly; (4) The loud

oise in the MRI scanner may exploit some cognitive resources which

ay reduce the reliance on the goal-directed system (As evidenced by

he effect of cognitive load on characteristics and strategies related to

oal-directed action control ( Foerde et al., 2006 , Otto et al., 2013 )); (5)

educed arousal inside the MRI scanner may negatively affect goal di-

ected action control. Taken together, we presumed that at least some

f these factors enhance the formation and/or manifestation of habitual

esponding as a function of training duration. Thus, we expected to suc-

essfully replicate the behavioral findings of Tricomi et al. ( Tricomi et

l., 2009 ). 

Nonetheless, we considered the consequences of the possibility that

he behavioral data would not support our hypothesis. This should not

ffect the individual level analyses we planned to perform; however, it

s crucial for the interpretation of the group level analyses of the imag-

ng data. Therefore, we stated that in case we would not observe the

ypothesized behavioral effect, we would conduct an exploratory anal-

sis, in which we would define two well-distinct subgroups for each

xperimental group. One subgroup would include participants who had

xpressed habitual responding and the other would include those who

ad not. The clustering would be based on a habit index calculated from

he behavioral data (see in Individual differences in functional MRI for

etails on the generation of this index). Then, we would compare these

ubgroups within training conditions to identify functional and micro-

tructural differences. 
3 
We hypothesized that regions within the corticostriatal network will

e implicated in habit formation and expression. For an elaborated de-

iction of the hypotheses and their corresponding confirmatory anal-

ses of the neuroimaging data see Table 1 . We expected that changes

n activity and micro-structural plasticity in the putamen will be in-

olved in habit learning while similar indices in the anterior caudate

nd vmPFC will be implicated in goal-directed action control. Neverthe-

ess, the (goal-directed action control associated) R-O contingencies in

ur task are very easy to learn. Thus, it is highly likely that the anterior

audate and the vmPFC would not be employed differentially enough

hroughout the task to yield an effect in most of our planned analyses

see Table 1 and Data analysis). Therefore, the analysis of these regions

s considered exploratory unless noted differently in Table 1 . 

. Materials and methods 

.1. Data Sharing 

Registered report protocol pre-registration is available at the Open

cience Framework: https://osf.io/385dx . This protocol received

n-principal acceptance on 21 June 2019. Behavioral data, analy-

is codes and task codes are available through the Github repository:

ttps://github.com/ranigera/MultiModalMRI _ Habits . The imaging data

n Brain Imaging Data Structure (BIDS) format is available at Open-

euro ( https://openneuro.org/datasets/ds004299/versions/1.0.0 )

nd unthresholded statistical maps are available at NeuroVault

 https://neurovault.org/collections/13090 ). 

.2. Participants 

We aimed to collect a sample size of 122 valid participants, ran-

omly assigned to two groups receiving short (1-day) or extensive (3-

ay) training, each with 61 participants. This number was based on

 power analysis calculated using the fMRIPower tool ( Mumford and

ichols, 2008 ) of the effect demonstrated by Tricomi et al. ( Tricomi

t al., 2009 ) in the right putamen ( Fig. 1 ), as defined by the automated

natomical labeling (AAL) atlas ( Tzourio-Mazoyer et al., 2002 ), yielding

 = 61 for the extensive training group (on which the effect was originally

emonstrated). 

To minimize a possible within-participant variability derived from

iurnal variation, participants from the 3-day group were scheduled to

articipate at as similar time as possible on each day of the experiment.

e confined participants to either morning or afternoon sessions. In ad-

ition, the experimenter collecting the data was the same person across

ll days of the experiment for each participant. 

The study was approved by the institutional review board at the

heba Tel Hashomer Medical Center and the ethics committee at Tel

viv University. All procedures were performed in compliance with the

elevant laws and institutional guidelines. We obtained informed con-

ent from all participants prior to their participation in the experiment.

Recruitment: As food rewards were used in the experimental proce-

ure (see Experimental procedure), participants were prescreened prior

o their recruitment to ensure that they generally like eating snacks,

o not restrict or limit their food consumption to avoid high calorie

oods, are not vegan, do not suffer from food allergies in relation to

nacks used in the experiment and are willing not to consume any food

or 6 hours before arriving to each day of the experiment. Failing to

omply with any of these criteria prevented participation in the experi-

ent. They also rated their liking on a Likert pleasantness scale (ranging

rom -5, very unpleasant, to 5, very pleasant) toward three sweet and

hree savory snacks which were later used to choose from at the be-

inning of the experiment. To ensure participants’ desire to earn and

at snacks, participants who did not rate the highest sweet and high-

st savory snacks with at least + 2 did not participate in the study. Fi-

ally, participants were asked to fill out the eating attitudes test (EAT-26

https://osf.io/385dx
https://github.com/ranigera/MultiModalMRI_Habits
https://openneuro.org/datasets/ds004299/versions/1.0.0
https://neurovault.org/collections/13090


R. Gera, M. Bar Or, I. Tavor et al. NeuroImage 272 (2023) 120002 

Table 1 

A mapping between hypotheses and confirmatory analyses of the neuroimaging data. 

# Hypothesis 

Confirmatory analysis / examined 

contrast Neuroimaging modality subtitle in the text 

Within-group analysis (3-day group) 

1 The putamen increases its cue 

sensitivity after extensive training 

when habitual action control is 

expressed (replicating the finding of 

Tricomi et al. ( Tricomi et al., 2009 ) ) . 

[task onset - rest onset] of the last 

two vs. first two sessions of training: 

ROI analysis of the average signal in 

the putamen. 

fMRI Replicating the effect found by 

Tricomi et al. ( Tricomi et al., 

2009 ) in the posterior (right) 

putamen 

2 The putamen increases its cue 

sensitivity after extensive training 

when habitual action control is 

expressed. 

[task onset - rest onset] of the last 

two vs. first two sessions of training. 

fMRI Replicating the effect found by 

Tricomi et al. ( Tricomi et al., 

2009 ) in the posterior (right) 

putamen 

3 The putamen gradually increases its 

cue sensitivity as training progresses. 

Linear trend analysis on the contrast 

of [task onset - rest onset] by 

assigning increasing linear trend 

weights to the 12 training sessions 

according to their chronological 

order. 

fMRI Training duration induced-effects 

4 The putamen increases its cue 

sensitivity after extensive training 

within each day. 

[task onset - rest onset] of the last vs. 

first sessions of training, averaged 

across days. 

fMRI Within-day training duration 

induced-effects 

5 The putamen gradually increases its 

cue-sensitivity as training progresses 

within each day. 

Linear trend analysis on the contrast 

of [task onset - rest onset] by 

assigning increasing linear trend 

weights across the four within-day 

training sessions averaged across 

days. 

fMRI Within-day training duration 

induced-effects 

Between-group analysis 

6 Devaluation exerts larger changes 

in activations in the anterior 

caudate and vmPFC following 

short training compared to 

extensive training. 

Compare groups (3-day group vs. 

1-day group) for 

[post-devaluation difference - 

pre-devaluation difference] 

formed by first contrasting 

[valued snack onset - devalued 

snack onset] for pre-and 

post-devaluation separately. 

fMRI Effect of devaluation as a 

function of training duration 

7 Extensive training induces 

micro-structural plasticity in the 

putamen compared to short 

training, expressed as a reduction 

in MD. 

A voxel-wise mixed-design 

ANOVA with factors of time 

(before / after training) and 

group (1-day or 3-day) with 

participant as a random factor for 

extracted MD maps. 

DTI DTI analysis 

Individual differences analysis (Behavioral and Neuroimaging) 

8 The putamen activations, as 

hypothesized in points 2-5, and 

anterior caudate and vmPFC 

activations, as hypothesized in 

point 6, positively and negatively 

correlate with individual 

expression of habits, respectively. 

Each hypothesis corresponding to 

points 2-6 was tested separately. 

For point 6 the analysis was done 

after collapsing the data across 

both groups. We used the 

individual maps generated in 

points 2-6 and correlated them 

with the individual behavioral 

habit index. 

fMRI Individual differences in 

functional MRI 

9 Micro-structural changes in the 

putamen correlate with 

individual expression of habits, 

i.e., the larger the change 

(reduction in MD), the larger the 

habitual action control. 

Correlation between the 

individual difference between 

extracted MD maps (before vs. 

after) and the individual 

behavioral habit index. We ran 

this analysis separately for each 

group. 

DTI Individual differences in 

micro-structural MRI 

In point 1 the ROI analysis is based on the automated anatomical labeling atlas, which was used for the power analysis of the effect demonstrated by Tricomi et 

al. ( Tricomi et al., 2009 ) in the right putamen. For all other analyses we used small volume correction analysis using a mask based on the Harvard-Oxford atlas. 

All the within-group and between-group analyses require that the behavioral results demonstrate habitual responding as a function of training duration (when 

comparing sensitivity to outcome devaluation between groups) in order to relate their neuroimaging results to habits. Abbreviations: ROI, region of interest; vmPFC, 

ventromedial prefrontal cortex; fMRI, functional magnetic resonance imaging; DTI, diffusion tensor imaging; MD, mean diffusivity. 

(  

a

2

 

o  

e  

s  

a  

v  

s  

s  
 Garner et al., 1982 )) to account for eating disorders. Participants with

 score of 20 or above were excluded from participation in the study. 

.2.1. Experimental procedure 

Participants were scanned before, during and following a free-

perant task ( Fig. 2 ), identical to the one used by Tricomi et al. ( Tricomi
4 
t al., 2009 ), aimed to render responding habitual as a function of exten-

ive training. Upon their arrival and before scanning, participants were

sked to taste three sweet and three savory snacks and choose their fa-

orite one of each type. We used snacks comprised of small pieces: the

weet set included M&M, Skittles and a Maltesers-like Israeli snack of

mall chocolate balls; the savory set included potato chips, Doritos and
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Fig. 1. Results of the power analysis of the effect 

found by Tricomi et al. ( Tricomi et al., 2009 ) in 

the right putamen (as defined by the automated 

anatomical labeling atlas ( Tzourio-Mazoyer et al., 

2002 )), using the fMRIPower tool ( Mumford and 

Nichols, 2008 ). The horizontal dashed line rep- 

resents an estimated power of 80%. The vertical 

dashed line represents the number of participants 

required to cross the 80% power criterion (n = 61). 

X represents where these lines meet. 

Fig. 2. Procedure general outline. The behavioral tasks are presented along the arrow and below the line are the imaging scans. For the 3-day group the parts 

marked in blue were performed only on the third day. The other parts, including the magnetic resonance imaging (MRI) scans, were conducted on each of the three 

days, except for the resting-state scans, which were conducted only at the beginning of the first day and after completing the free-operant task on the last day. The 

1-day group performed all stages in one day. Post experiment tasks included the administration of questionnaires, working memory assessment and a variant of the 

two-step sequential decision-making task ( Daw et al., 2011 ). Abbreviations: DWI, diffusion weighted imaging; fMRI, functional magnetic resonance imaging. 
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ashews. The one sweet and one savory snack chosen by each partici-

ant were then used throughout the entire experiment. Afterwards, par-

icipants entered the MRI scanner and first underwent DTI and resting-

tate scans. Then, they performed the free-operant task, consisting of

hree main stages: (1) training, (2) outcome devaluation and (3) extinc-

ion test. The training was comprised of 8-minute sessions. The amount

f training sessions was varied between two experimental groups: ei-

her two sessions on a single day (1-day group) or 12 sessions, four

n each of three consecutive days (3-day group). During all training

essions and the extinction test, participants were scanned using fMRI,

hereas the devaluation procedure was conducted outside the scanner.

efore starting and after completing the task phase on each day, par-

icipants’ DTI data was obtained. Anatomical scans were completed at

he end of each day. An additional resting-state scan was performed

fter completing the task phase on the last day. Following the comple-

ion of the free-operant task and all scanning procedures, participants

nderwent a working memory capacity assessment and were asked to

ll out a battery of questionnaires aimed at estimating the relationships
 (  

5 
etween individual factors and tendencies to manifest habits as well as

btain self-report indices of habits. Participants also performed a vari-

nt of the two-step sequential decision- making task ( Daw et al., 2011 ),

hich has been shown to dissociate the use of model-free and model-

ased decision-making strategies. These strategies are hypothesized to

eflect goal-directed and habitual action control. The experiment was

rogrammed and run in Matlab (The MathWorks, Natick, Massachusetts,

SA) using the Psychophysics toolbox ( Brainard, 1997 ). For the working

emory capacity assessment, we used a computerized task (see Working

emory assessment) programmed and run using Inquisit Lab (Millisec-

nd Software, Seattle, WA, USA). 

.3. Free-operant task 

Training: Each training session was comprised of 12 task blocks of

0 or 40 seconds and eight rest blocks of 20 seconds. During the task

locks, participants were trained on two Stimulus-Response-Outcome

S-R-O) associative structures to induce instrumental learning of two
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ets, each including a different discriminative stimulus. During each task

lock, participants were presented with a fractal (stimulus) along with

n illustration of a corresponding button. Pressing this button (response)

ither yielded a snack reward (outcome), represented by its picture, to

e consumed following the training, or a gray circle appearing briefly,

ndicating no reward. If any other button was pressed, the display did

ot change. Participants were instructed that they can press the button

s often or as little as they like during the presentation of the fractal. We

urther instructed them that if they do not want any more of their fa-

orite savory or sweet snack, they do not have to continue pressing and

hat otherwise they should try to earn as much reward as possible. Par-

icipants were also instructed to pay attention to the pairings of fractals

nd foods and that they will be tested on them later. Rewards were deliv-

red on a 10-second variable interval (VI) schedule, implemented as 0.1

robability of reward becoming available every second. If a reward had

ecome available, it was delivered on the next button press. Each frac-

al was associated with a particular button press and a particular snack

onsistently throughout the entire experiment for each participant, but

ounterbalanced across participants. A different fractal was used to indi-

ate the rest blocks, where participants were asked not to respond. Each

ractal appearance and disappearance marked the beginning and the end

f a block, respectively. Block order was pseudo-randomized such that

he same block type would not occur consecutively. At the beginning of

he first day, before entering the scanner, participants were presented

ith the instructions for the training and underwent a short practice

ound. After completing each day’s training, participants received 0.5

nack piece for their consumption for every snack reward won. 

Outcome devaluation: Following completion of all training ses-

ions, participants underwent a selective satiation ( Valentin et al., 2007 ,

ricomi et al., 2009 , Rolls et al., 1983 , Balleine and Dickinson, 1998 )

utside the scanner, in order to devalue either the sweet or the savory

nack (counterbalanced across participants). To accomplish that, par-

icipants received a large amount of one of the snacks, provided in a

arge bowl ( ∼1.4 liter), and were encouraged to consume it until it is no

onger pleasant to them. Participants were further instructed that the

ize of the bowl is arbitrary and that they should ask for a refill if it has

ecome empty and the snack is still pleasant to them. When deciding

o stop eating, participants were asked if they are sure. The instructions

ccompanying this procedure were aimed to ensure that participants’

eport of satiety is genuine and not due to the potentially intimidating

aboratory setting. 

Extinction: Subsequent to outcome devaluation, participants were

laced back in the scanner, where they performed a three-minute ex-

inction test. The extinction test was implemented in the same manner

s the training phase and accordingly, participants were told that they

ill perform the same task as before. However, during this phase, re-

ponses were not rewarded. This phase consisted of nine 20-seconds

locks: three task blocks for each of the two associative structures and

hree rest blocks. 

The goal of this part was to test whether responding has been ren-

ered habitual, as measured by comparing the change in the response

ate toward the valued outcome following devaluation with the change

n response rate toward the devalued outcome following devaluation. A

elective reduction in response rate toward the devalued outcome rela-

ive to the valued outcome serves as an evidence for goal-directed be-

avior, whereas the lack of such differentiation indicates insensitivity to

utcome value and thus considered as an evidence for habitual control.

Reacquisition: We added a reacquisition test to exploratory evalu-

te the extent to which the selective satiation procedure is effective,

nd to examine how outcome presentation affects responding. Follow-

ng extinction, participants performed another run comprised of nine

0-second blocks, three of each type, during which the outcomes were

vailable again (as in the training stage). This phase was conducted in-

ide the scanner to avoid context-related confounds. 

Manipulation check: Participants were asked to rate on Likert scales

heir hunger (1, very full; 10, very hungry) and pleasantness towards
6 
ach of the two snacks (-5, very unpleasant; 5, very pleasant) prior to

ach day’s training, following the devaluation procedure and at the end

f the experiment upon completion of post-task scans. Regarding the

leasantness ratings, they were instructed not to rate the general pleas-

ntness of each snack but rather to rate how pleasant a piece of each

nack would have been pleasant to them at that moment. This allowed

s to conduct a manipulation check for the outcome devaluation proce-

ure, verifying it had indeed reduced the pleasantness for the devalued

nack relative to the valued snack. Following devaluation, we used a

imilar pleasantness rating to obtain participants’ pleasantness toward

he fractal images. Additionally, following the first day’s training, we

ssessed participants’ contingency awareness by presenting them each

ractal and asking them to rate which of the snacks was more likely to be

arned when pressing the corresponding button (-5, the specified sweet

nack was more likely; 5, the specified savory snack was more likely)

n a Likert-scale. 

Working memory assessment: After completing the experiment, the

articipants were asked to perform a working memory capacity task. We

sed an automatic version of the Operation Span (OSPAN) ( Unsworth et

l., 2005 ) procedure to assess working memory capacity for each partic-

pant. In this task, participants were asked to remember a series of let-

ers while solving arithmetic problems. The score was the sum of items

cross all correctly recalled sets. 

Two-step sequential decision-making task: Participants were asked

o perform a variant of the two-step decision-making task ( Daw et al.,

011 ) designed to estimate the degree to which an individual uses a

odel-free or a model-based reinforcement learning strategy, while per-

orming a multi-step learning and decision-making task. Participants

ere asked to choose between two actions, and according to their

hoice, they were stochastically transitioned into a visually identifiable

utcome state where a reward (ranging from 0-100 points) is delivered

ollowing a key press. The task included two key modifications to the

riginal two-step task, each designed to improve task sensitivity to the

ction selection strategy used by individual participants. Firstly, partic-

pants were not asked to make a choice at the second level state; rather,

hey simply pressed a key to receive the reward associated with the

utcome state. This design both simplifies the learning task from the

erspective of the participant, and improves model identifiability by ex-

cerbating the value discrepancy between first-level actions (see Kool

t al. ( Kool et al., 2016 ) for a detailed discussion). Second, like in the

riginal two-step task, participants were asked to learn the probability

f obtaining a reward at each outcome state; however, reward magni-

udes were randomly varied from 1-100 points (0 being considered a

oss). This modification exaggerates the learning signals associated with

odel-free (which learns according to observed reward magnitudes),

nd model-based (which learns about observed reward probability) con-

rollers, further dissociating the behavioral signature associated with

ach strategy. 

Questionnaires: After completing the experiment, participants were

sked to fill out a battery of questionnaires aimed to explore potential

oderators of behavioral and neural effects (or an interaction between

hem) observed in the experiment. The battery consisted of the following

uestionnaires: Obsessive Compulsive Inventory – Revised (OCI-R) ( Foa

t al., 2002 ), Barratt Impulsivity Scale –(BIS-11) ( Patton et al., 1995 ),

tate-Trait Anxiety Inventory (STAI) ( Spielberger et al., 1970 ), Trier In-

entory for Chronic Stress (TICS) ( Schulz and Schlotz, 1999 ), A loss aver-

ion questionnaire (using a modified version of a lottery choice task)

 Fehr and Goette, 2007 , Gächter et al., 2010 ), Big Five Inventory (BFI)

 John and Srivastava, 1999 ) and Eysenck Personality Questionnaire –

evised (EPQ-R) ( Eysenck et al., 1985 ). 

Additionally, we obtained individual reports of general tendency for

abitual behavior using the Creature of Habits Scale (COHS) ( Ersche et

l., 2017 ) as well as individual sense of automaticity during the task

sing the Self-Report Behavioral Automaticity Index (SRBAI) ( Gardner

t al., 2012 ) with adjustments to fit our experiment (as done by Sanne

e Wit et al. ( de Wit et al., 2018 )). This allows us to explore the rela-
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ionships between self-report indices of habits with both behavioral and

eural indices. 

Both questionnaires and working memory data were collected for

xploratory analysis of the role of individual difference variables in habit

ormation and expression and to test the relationships between our task

nd self-reported habit indices. This analysis may serve to point at future

tudy directions in the field and was not analyzed as part of this work. 

.4. MRI data acquisition 

We acquired imaging data using a 3T Siemens Prisma MRI scanner

nd a 64-channel head coil, at the Strauss imaging center located at

el Aviv University. We acquired high-resolution T1-weighted struc-

ural images after each day’s task phase for anatomical localization

sing a magnetization prepared rapid gradient echo (MPRAGE) pulse

equence (Repetition time (TR) = 2.53 s, echo time (TE) = 2.99 ms,

ip angle (FA) = 7°, field of view (FOV) = 224 ×224 ×176 mm, resolu-

ion = 1 ×1 ×1 mm). A DTI protocol included diffusion-weighted images

cquired using spin-echo echo-planar-imaging pulse sequence (TR = 4

; TE = 59.4 ms; Slice thickness = 1.7 mm; image resolution 1.7 ×1.7)

ith a b value of 1000 s/mm 

2 in 64 nonorthogonal gradient directions.

e also acquired five non-diffusion (b0) images and additional seven

on-diffusion (b0) images with an opposite phase-encoding direction

o account for susceptibility induced distortions. To accelerate acquisi-

ion, we used multiband acceleration factor (a simultaneous multi-slice

ethod) of 2 and parallel imaging factor (iPAT) of 2. 

For functional data we acquired T2 ∗ -weighted echo-planar images

TR = 1 s, TE = 30 ms, FA = 68°, FOV = 212 mm 

2 , acquisition matrix of

06 ×106) with blood oxygen level-dependent (BOLD) contrast. Sixty-

our interleaved axial slices, with their orientation tilted 30° from the

nterior commissure-posterior commissure line to alleviate the frontal

ignal dropout ( Deichmann et al., 2003 ) were acquired. In-plane reso-

ution was 2 ×2 mm, with a thickness of 2 mm and a gap of 0.4 mm

o cover the entire brain. A multiband sequence ( Moeller et al., 2010 )

ith acceleration factor of 4 and iPAT of 2, in an interleaved fashion,

as used. The same protocol with identical parameters was used to ac-

uire six-hundred volumes of resting state data during a 10-minute scan,

onducted prior to the first day’s beginning and following the last day’s

ompletion of the free-operant task. During this scan participants were

sked to rest and not to think about anything in particular while focus-

ng on a fixation point. We used the eye-link 1000 plus eye-tracker to

nsure their eyes are open. 

. Data analysis 

.1. Exclusion criteria 

Data from participants who did not complete all experimental parts,

ith the exceptions of the questionnaires, working memory assessment

nd two-step sequential decision-making tasks, was excluded. To guar-

ntee that participants were indeed engaged in the task, i.e., wanted to

arn the snacks and in a similar magnitude for both snacks, we averaged

heir pleasantness ratings that were obtained at the beginning of each

ay. An average of less than -1 or a difference of more than 3 points

etween the ratings of the sweet and savory snacks led to exclusion. 

Additionally, to ensure similar amount of operant-training for both

ssociative structures, data from participants with a difference of > 2

Ds between the mean response rates toward the two snacks during the

raining procedure was excluded. 

.2. Behavioral analysis 

Behavioral statistical analysis was carried out using R programming

anguage (R Foundation for Statistical Computing, Vienna, Austria). 

Manipulation checks: To verify that, as expected, the devaluation

rocedure selectively decreased pleasantness for the devalued snack we
7 
an a 2 (phase: pre- or post-devaluation) x 2 (outcome: valued or deval-

ed) repeated measures analysis of variance (ANOVA) on the pleasant-

ess ratings. Additionally, we expected a reduction in hunger ratings fol-

owing the devaluation procedure. To test this, we ran a paired-samples

-test to compare hunger ratings obtained pre- and post-devaluation. 

Training duration induced-changes : We tested whether response

ates were differentially affected by outcome devaluation and if the pat-

ern is consistent with decreased sensitivity following extensive training.

or each outcome type (valued and devalued) we calculated the differ-

nce between the average response rate during the extinction phase and

he corresponding average response rate during the last training ses-

ion. On this change measure we ran a mixed-model repeated measures

NOVA with a within-participant factor of Devaluation (valued or de-

alued outcome) and a between-participant factor of Group (1-day or

-day) with participant as a random factor. We expected this analysis to

ield an interaction effect, driven by a smaller reduction in the relative

esponding towards the devalued outcome in the 3-day group compared

o the 1-day group, indicating the emergence of habitual responding.

uch a pattern constitutes a replication of the behavioral results ob-

erved in Tricomi et al. ( Tricomi et al., 2009 ) ( Fig. 3 A). Subsequently,

e conducted post hoc t-tests to determine whether there are signifi-

ant differences between specific conditions. We verified that there are

o significant differences in response rates between groups, or between

he two outcomes during the last training session. For each group we

ompared changes in response rates for the valued and devalued out-

omes following devaluation and further, compared response rates for

he valued and devalued outcomes during extinction. 

.3. Exploratory analysis of the two-step sequential decision-making task 

ata 

A computational model analysis of the two-step task data was

lanned to follow the mixture model approach outlined in Daw et al.

 Daw et al., 2011 ), in which model-free and model-based reinforcement

earning agents are fit to the data according to a mixture parameter.

hen, the extracted measure of individual degree of utilizing model-

ree/model-based strategies was planned to be used for exploratory anal-

sis. We planned to examine its relationship with the individual habit

ndex (as measured in the free-operant task) and with functional and mi-

rostructural indices we used for the individual differences analysis of

he free-operant task data (see Neural correlates of individual tendency

o form habits). 

. MRI data analysis 

.1. fMRI data preprocessing 

Raw imaging data in DICOM format was converted to NIfTI for-

at and re-organized to fit to the Brain Imaging Data Structure (BIDS)

 Gorgolewski et al., 2016 ). We conducted preprocessing using fMRIprep

 Gorgolewski et al., 2011 , Esteban et al., 2019 , Gorgolewski et al.,

017 ), which included: correction of each T1 weighted volume for bias

eld using N4BiasFieldCorrection ( Tustison et al., 2010 ) and skull strip-

ing using antsBrainExtraction (using OASIS template); Estimation of

ortical surface using FreeSurfer ( Dale et al., 1999 ); Co-registration

f the skullstripped T1w volume to skullstripped ICBM 152 Nonlinear

symmetrical template ( Fonov et al., 2009 ) using nonlinear transfor-

ation implemented in ANTs ( Avants et al., 2008 ); Functional data

nderwent motion correction using MCFLIRT ( Jenkinson et al., 2002 ),

hen co-registration to its corresponding T1w volume using boundary-

ased registration with nine degrees of freedom – implemented in

reeSurfer ( Greve and Fischl, 2009 ); Motion correcting transformations,

1 weighted transformation and Montreal Neurological Institute (MNI)

emplate warp were applied in a single step using antsApplyTransfor-

ations with Lanczos interpolation; Extraction of three tissue classes

rom T1w images using FSL FAST ( Zhang et al., 2001 ); Voxels from
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Fig. 3. The main behavioral and neuroimaging re- 

sults reported by Tricomi et al. ( Tricomi et al., 

2009 ). (A) Behavioral results. During the last ses- 

sion of training, prior to the devaluation procedure 

(left), there were no significant differences in re- 

sponse rates between groups or when responding 

for the two food rewards (one which will be deval- 

ued through selective satiation and one which will 

not). During the extinction test following the deval- 

uation procedure, response rates for the still ‐valued 

outcome remained high, as did response rates for 

the devalued outcome for the 3 ‐day group. In con- 

trast, response rates for the 1 ‐day group for the de- 

valued outcome were reduced, producing a signif- 

icant training ×devaluation interaction ( P < 0.05). 

(B) Neural correlates of habit learning , as re- 

vealed by an increasing response with training to 

the onset of task blocks relative to the onset of rest 

blocks in the 3 ‐day group. The right posterior puta- 

men showed a significant increase in the [task onset 

- rest onset] contrast from the first two sessions to 

the final two sessions of training ( x = 33, y = − 24, 

z = 0; P < 0.001, P (cor) < 0.05). The blue crosshairs 

mark the voxels with the peak contrast value. ∗ The 

Fig. and Fig. legend were adapted from Tricomi et 

al. ( Tricomi et al., 2009 ) with permission from the 

authors and the publisher (John Wiley and Sons) 
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erebrospinal fluid and white matter were used to create a mask sub-

equently used to extract physiological noise regressors using CompCor

 Behzadi et al., 2007 ); Masks were eroded and limited to subcortical

egions to limit overlap with gray matter and six principal components

ere estimated; Framewise displacement ( Power et al., 2014 ) was cal-

ulated for each functional run using Nipype implementation. 

We created confound files (tsv format) for each scan (each run

f each task of each session of each participant), with the following

olumns: standard deviation of the root mean squared (RMS) intensity

ifference from one volume to the next (DVARS), six anatomical compo-

ent based noise correction method (aCompCor) ( Behzadi et al., 2007 ),

rame-wise displacement ( Power et al., 2014 ) (FD), and six motion pa-

ameters (translation and rotation each in 3 directions) as well as their

quared and temporal derivatives (Friston 24-parameter model ( Friston

t al., 1996 )). We added a single time point regressor (a single addi-

ional column) for each volume with FD value larger than 0.9, in order

o model out volumes with extensive motion. Scans with more than 15%

crubbed volumes were excluded from analysis. 

Following data processing by fMRIprep, for all other preprocessing

rocedures, we used FSL default settings, including prewhitening, high-

ass filtering (using a 100-second cutoff) and spatial smoothing (using

 5 mm full-width-half-maximum Gaussian kernel). 

.2. fMRI analysis 

We used FEAT (fMRI Expert Analysis Tool) of FSL ( Smith et al., 2004 )

or all fMRI analyses. 

We conducted a general linear model (GLM) analysis, in which we

lanned to include for each participant the following regressors for each

raining session: ‘valued snack onset’, ‘devalued snack onset’ and ‘rest

nset’ to model the onsets of the corresponding blocks, and ‘valued

nack’, ‘devalued snack’ and ‘rest’ to model the entire corresponding

locks (see a slight necessary deviation from this plan in the fMRI main
8 
esults). The regressors were convolved with a canonical double-gamma

emodynamic response function and their temporal derivatives were en-

ered into the model. Additionally, the confounds produced by fMRIPrep

escribed above were included in the model. This design matrix was

egressed against each training and extinction session to generate pa-

ameter estimates for each participant for each session in the first-level

nalysis. For some of the analyses we first pooled together the BOLD

ata of ‘valued snack onset’ and ‘devalued snack onset’ to create a ‘task

nset’ regressor (coinciding with Tricomi et al. ( Tricomi et al., 2009 )). 

Replicating the effect found by Tricomi et al. ( Tricomi et al., 2009 ) in

he posterior (right) putamen. To test for increased activation in the puta-

en as a function of training duration and corresponding to training

uration-induced transition to habitual responding, we used the train-

ng BOLD data of the 3-day group. At the second-level (fixed effects),

e averaged both task and rest onsets across the first two and last two

essions of training separately. Then, we tested a contrast of [task onset

rest onset] for the last two sessions of training compared with the first

wo. All second-level analyses across all participants of the 3-day group

ere used for a group analysis (mixed effects). The power analysis in

MRIPower is calculated to obtain an average effect across a specific

egion of interest (ROI) and in this case we thus extracted the average

ignal from the right putamen and tested for the replication of the effect

rom Tricomi et al. ( Tricomi et al., 2009 ) ( Fig. 3 B). 

In addition, we conducted a similar analysis, in which we performed

mall volume correction (SVC) analysis (see below for details) to test for

he same contrast [task onset – rest onset] for the last two sessions of

raining compared with the first two, in the (bilateral) putamen, anterior

audate and vmPFC. 

Training duration induced-effects: We used the same first-level de-

ign matrix as described above to test for positive and negative correla-

ions between the BOLD signal and training duration to identify changes

n BOLD activity related to instrumental training as training proceeds.

his was aimed to test shifts in balance of activity in specific regions of

https://www.sciencedirect.com/topics/medicine-and-dentistry/cerebrospinal-fluid "5Co Learn more about Cerebrospinal Fluid
https://www.sciencedirect.com/topics/medicine-and-dentistry/white-matter "5Co Learn more about White Matter
https://www.sciencedirect.com/topics/medicine-and-dentistry/gray-matter "5Co Learn more about Gray Matter
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nterest (putamen, anterior caudate and vmPFC). Similar to the analysis

escribed above, we analyzed the BOLD training data for the training

ithin the 3-day group. In the second-level analysis we used a linear

rend analysis on the contrast of [task onset – rest onset] across the 12

raining sessions, by assigning them linear weights [-13, -11, -7, -5, -3,

1, 1, 3, 5, 7, 11, 13] with respect to their chronological order. This

econd-level analysis was then used for a group analysis of the positive

nd negative correlations between our contrast of interest and training

uration. 

Within-day training duration induced-effects : Based on the within-

ay effect found by Tricomi et al. ( Tricomi et al., 2009 ) in the puta-

en and evidence for the role of context in the manifestation of habits

 Thrailkill and Bouton, 2015 ), we expected that habits will be re-formed

n the slightly different contexts different days constitute, presumably

lowly becoming more stable and less susceptible to changes in context.

hus, to test for within-day training effects, we first contrasted [task

nset – rest onset] for each participant for each training session and

hen averaged each of the four sessions (separately) across the three

ays of training in the second-level (fixed effects) analysis. Then, we

onducted the following analyses: (1) examined the contrast of [last

fourth) session – first session] in a group analysis; (2) constructed a

inear trend analysis across the four training sessions by assigning them

inear weights [-3, -1, 1, 3] with respect to their within-day chrono-

ogical order during the second-level analysis. Then, we used a group

nalysis to test for positive and negative correlations between the BOLD

ignal and within-day training duration. 

Effect of devaluation as a function of training duration: We tested

or differential effects of training duration on relative changes in neu-

al correlates toward valued and devalued outcomes following outcome

evaluation. In a second-level analysis (fixed effects), we used a con-

rast of [valued snack onset – devalued snack onset] in the last training

ession (before the devaluation procedure) and the same contrast for

he extinction test for each participant to produce estimates for pre-

nd post-devaluation difference, respectively. Then we used a contrast

f [post-devaluation difference – pre-devaluation difference] to obtain

 single map per participant representing the change in difference be-

ween the BOLD response to the valued snack block onsets vs. the deval-

ed snack block onsets. All second-level analyses across all participants

f both groups were used for a group analysis (mixed effects) where we

ompared extensive training (3-day group) with short training (1-day

roup). 

We report group level whole-brain statistical maps thresholded at Z

 3.1 and cluster-based Gaussian Random Field corrected for multiple

omparisons with a (corrected) cluster significance threshold of p = 0.05.

 Worsley et al., 2001 ) 

Small volume correction (SVC) analysis: Based on prior research

n animals and humans we hypothesized that goal-directed and habit-

al action control, as well as the shift between these two strategies,

re substantially associated with the following brain regions: putamen,

nterior caudate and vmPFC (see ( Balleine and O’Doherty, 2010 ) for re-

iew). Therefore, in addition to the whole-brain analyses, we conducted

roup level analyses for each of these regions, with a mask based on the

arvard-Oxford atlas, containing the voxels which are part of the re-

ion. Nevertheless, note that as pointed above, due to the nature of our

ask, we consider most of the anterior caudate and vmPFC SVC analyses

xploratory (see Hypothesis and Table 1 ). The masks are shared with

he data on OpenNeuro. 

.3. Secondary parallel fMRI analysis 

In our planned fMRI data analysis presented above, we planned to fo-

us on blocks’ onsets rather than the entire blocks. This was the case for

everal reasons: (1) comply with Tricomi et al. ( Tricomi et al., 2009 ), (2)

he entire task blocks include several components such as motor press-

ng which could hinder effects of interest, (3) fMRI may not be ideal in

apturing such sustained effects and (4) habits are often conceptualized
9 
s an automated behavior initiated by the appearance of a cue, which

ts well with the phasic event of cue presentation. However, behavior

hould be constantly under habitual control during the task blocks af-

er a habit has been formed. Thus, as we have a relatively large sample

hat could be sensitive enough to identify relevant effects despite noisy

onditions, we also ran the same analyses described above on the entire

locks’ data. To this end we planned to use the same exact first-level

LM as above, however with the duration of the entire block and not

nly its onset. We planned to use the ‘valued snack’, ‘devalued snack’ and

rest’ regressors instead of the ‘valued snack onset’, ‘devalued snack on-

et’ and ‘rest onset’, respectively. We consider this set of parallel group

evel analyses as secondary (exploratory) analyses and report only ef-

ects of interest that survived correction for multiple comparisons. 

.4. Exploratory resting-state fMRI analysis 

We planned to use the acquired resting-state fMRI data for an ex-

loratory analysis of the role of functional connectivity in habit forma-

ion and manifestation. We planned to generate seed to voxel connectiv-

ty maps based on our ROIs. Then, to conduct several analyses, including

he following: comparing differences in changes in connectivity (before

s. after training) between groups, and examining separately in both

roups how baseline connectivity predicts training outcome and how

hanges in functional connectivity (before vs. after training) correlate

ith training outcome. Special emphasis was planned to be placed on

xamining negative correlations between activity in the anterior caudate

nd the putamen and its relationship with behavioral manifestation of

abits in both individual and group levels. We planned to report only

ffects of interest that survived correction for multiple comparisons. 

.5. DTI preprocessing 

Pre-processing procedures of the diffusion images were conducted

sing FSL ( Smith et al., 2004 ). We used TOPUP ( Andersson et al., 2003 )

o correct for susceptibility induced-distortions and EDDY ( Andersson

nd Sotiropoulos, 2016 ) to correct for motion and remove eddy currents

rtifacts. DTIFIT was used to fit a tensor model for each voxel and to

xtract mean diffusivity (MD) and fractional anisotropy (FA) maps. We

lanned to use FSL’s EPI_REG function for boundary-based registration

 Greve and Fischl, 2009 ) of the diffusion maps (i.e., MD and FA) to

tructural data registration, followed by non-linear transformations to

he MNI template using FNIRT ( Andersson et al., 2007 ) (see a slight

eviation from this plan in Notes on data collection, missing data and

ata analysis). 

.6. DTI analysis 

Our goal was to identify training duration-induced micro-structural

lasticity, that as hypothesized, corresponds to a behavioral transition

o habitual responding. All voxels of our ROIs (putamen, anterior cau-

ate and vmPFC) were extracted according to the Harvard-Oxford atlas

nd we planned to perform a voxel-based mixed-design ANOVA with a

ithin-participant factor of time (before or after training, namely, first

nd final scans) and a between-participant factor of group (1-day or 3-

ay) with participant as a random factor. This analysis was planned to

e carried out for both MD and FA measures. Yet, as evidence for MD

ask-induced changes is more robust, we consider the FA analysis as

xploratory. We particularly expected significant micro-structural plas-

icity in the putamen as a function of training duration (manifested as an

nteraction between group and time). After performing this hypothesis-

riven analysis, we also planned to conduct a whole-brain exploratory

nalysis. For all statistical tests of DTI data we used FSL’s Randomize

ool ( Winkler et al., 2014 ) to employ nonparametric permutation tests

n which significance is assessed using cluster-based thresholding cor-

ected for multiple comparisons based on cluster mass with a threshold

f p < 0.05. 
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. Neural correlates of individual tendency to form habits 

.1. Individual differences in functional MRI 

In addition to our group level analyses we aimed to identify the neu-

al mechanisms underlying differences in individual tendencies to form

nd manifest habits. We constructed a parametric index, based on task

erformance, that measures the level of individual habit expression. For

ach participant we calculated the differences between the average re-

ponse rate before devaluation (last training session) and after devalua-

ion (during extinction) for the valued and the devalued outcomes. The

ifference between the two obtained measurements (valued change –

evalued change) was used as the habit index (with lower scores indi-

ating more habitual behavior). We correlated this index with all indi-

idual functional data of the different indices described above, i.e., with

he contrast of [task onset – rest onset] in the first two vs. the last two

raining sessions, training duration correlated activity, and a contrast

f [post-devaluation difference – pre-devaluation difference]. The latter

as analyzed after collapsing the data of both groups. 

.2. Individual differences in micro-structural MRI 

To study the correlation of micro-structural changes with habit ex-

ression we performed a voxel-based correlation analysis between the

ndividual habit index and the difference between the first and final

cans (before and after training) of all voxels in our ROIs (putamen,

nterior caudate and vmPFC). We analyzed both MD and FA measures

the analysis of the latter is considered exploratory) and used separate

nalysis for each group as they cannot be meaningfully compared. 

. Main results 

In the sections below, we report all pre-registered analyses. We

pecifically note when presenting closely related exploratory analyses

f integrated here (and not in the exploratory section) for the sake of

onsistency and fluency. 

.1. Participants 

In order to reach our target sample size of 122 valid participants

n = 61 in each experimental group) we recruited 161 participants. Over-

ll, 15 participants were excluded based on our pre-registered exclusion

riteria: 13 participants were excluded due to a differential response rate

of > 2 SD) towards the two snacks during the training phase, one partic-

pant was excluded due to low pleasantness rating for at least one of the

nacks (average of less than -1) and another one for strongly preferring

ne of the snacks over the other (difference of > 3), as measured before

ny snack consumption was made. Eleven participants were excluded

ecause they did not complete the experiment, six due to technical rea-

ons, four due to suspected brain abnormalities or medical findings and

wo were found out (post-recruitment) not to be included within the

cope of healthy participants. Our final sample included N = 123 (61 par-

icipants in the short training group and 62 in the extensive training

roup), 61 females, aged 18 – 39 (mean = 24.7, SD = 3.81). 

.2. Notes on data collection, missing data and data analysis 

At around the middle of data collection we switched the specific

ype of Skittles we used (from the red to the green version) due to a

hortage in stores. As we generalize across snacks and as participants

hose their preferred sweet snack out of three options (at the beginning

f the experiment) we assume this should not have affected our results.

The fMRI data from the second run in the first day of one participant

as excluded due to excessive movement (more than 15% scrubbed vol-

mes). We included this participant’s data in all analyses in which this

un is first averaged with other runs by omitting it from in the averaging
10 
rocess, effectively excluding this participant only from the linear trend

nalysis across all days. Another participant’s fMRI data during the ex-

inction test was not analyzed due to mistakenly acquiring it in 0° rather

han 30° orientation from the anterior commissure - posterior commis-

ure line, effectively omitting this participant’s only from the analyses

f before vs. after devaluation. 

In addition to the fMRI data preprocessing procedures described

bove (see MRI data analysis), the functional data also underwent dis-

ortion correction (based on fieldmap scans) using 3dQwarp ( Cox and

yde, 1997 ) which was applied along with the other transformations in

 single step using antsApplyTransformations (See MRI data analysis).

ieldmap scans were not acquired for three participants in the extensive

raining group and thus we preprocessed their data without the fieldmap

orrection. Similarly, non-diffusion images in opposite phase-encoding

irection were not acquired for five participants (four in the extensive

raining group and one in the short training group). Therefore, we pre-

rocessed their DTI data without the susceptibility-induced distortion

orrection. In both cases, we tested whether the inclusion of these par-

icipants has a substantial influence on our findings by repeating all

nalyses without them. We found that removing these participants did

ot affect the pattern of any of our main fMRI and DTI results. Finally,

wo participants were omitted from the DTI analyses (both from the ex-

ensive training group) since some of their DTI data was not acquired. 

Note that in order to achieve a satisfying registration for all diffusion

ata of all participants we had to slightly deviate from our planned pre-

rocessing pipeline. Specifically, we ran FSL’s EPI_REG function on the

rst corrected B0 image rather than the MD and FA maps and then ap-

lied the native-to-MNI individual transformations formed by fmriprep.

.3. Behavioral results 

Training duration induced-changes : In contrast to our hypothesis

e did not replicate the behavioral effects observed in Tricomi et al.

 Tricomi et al., 2009 ). Extensive training did not decrease sensitivity to

utcome devaluation compared to short training as indicated by the lack

f group x outcome type interaction effect on the change in response rate

ollowing outcome devaluation (F 1,121 = 0.33, p = 0.567, 𝜔 

2 = 0; Fig. 4 ).

his suggests that this procedure, at least with the currently used train-

ng parameters, may not be sensitive enough to either differentially in-

uce or identify differences in habit formation as a function of training

uration. 

Although we did not find a group x outcome type interaction ef-

ect, we did find a main effect of outcome type (valued vs. devalued;

 1,121 = 40.73, p < 0.001, 𝜔 

2 = 0.07), driven by a smaller reduction in

esponse rate for the still-valued outcome compared to the devalued out-

ome following outcome devaluation (t 60 = 5.26 for the short training

roup, t 61 = 3.88 for the extensive training group; p < 0.001). A com-

arison of the response-rate for the two outcomes strictly during the

est phase (after devaluation) followed the same pattern (t 60 = 5.13 for

he short training group, t 61 = 4.25 for the extensive training group; p <

.001). We also verified that the difference between outcome types was

ot present prior to outcome devaluation (short training group: t 60 = -

.87, p = 0.389; extensive training group: t 61 = 0.72, p = 0.472). While

hese results are aligned with the interpretation that participants in both

roups were goal-directed, this effect was mainly driven by a small sub-

et of participants in each group, whereas the majority of participants

in both groups) responded habitually (See Subgroup-based exploratory

nalyses). Additionally, we found a main effect of group (F 1,121 = 7.34,

 = 0.008, 𝜔 

2 = 0.05). This effect stems from a lower response rate in

he short-training group compared to the extensive-training group prior

o the outcome devaluation (t 120.3 = -2.93, p = 0.004; see in Fig. 4 ). This

ndicates a differential engagement pattern in the two training groups

rior to the manipulation and could have potentially confounded the ef-

ects of training duration. We also explored the effects of a reacquisition

ound on participants’ response rate (see Supplementary Materials and

upplementary Fig. 1). 
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Fig. 4. Response rates for the valued and devalued outcomes before and after devaluation in the short and extensive training groups. 
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Exploratory: Following the work by Pool et al. ( Pool et al., 2022 ),

ho used the same procedure in behavior-only settings and found that

he training duration effects on habit formation were moderated by the

ffective component of stress (composed of sub-factors such as anxiety,

hronic worrying and social isolation), we conducted a similar analy-

is. A detailed description of the method and results of this analysis

an be found in the Supplementary Materials. Briefly, to adhere to the

nalysis used by Pool et al. ( Pool et al., 2022 ) we first conducted an

xploratory factorial analysis on the relevant questionnaire data (STAI,

ICS and BIS-11) to identify relevant factors and specifically to look

or a factor that largely corresponds with stress affect (Supplementary

able 1). We then included the factor most corresponding with stress

ffect along with Devaluation (valued or devalued outcome), Group (1-

ay or 3-day) and all possible interactions as independent variables in

 mixed-effects linear regression model where the dependent measure

s the change in response rate following outcome devaluation. We used

articipant as a random factor. We found a trending interaction between

he stress affect, devaluation and group ( 𝜒2 
1 = 3.55, p = 0.059), indicat-

ng stress affect may modulate the interaction between devaluation and

raining length. We followed this analysis with a simple slope approach

nd tested the interaction between devaluation and group for partici-

ants low (-1 SD) and high ( + 1 SD) on the stress affect measure. We did

ot find an effect (though a weak trend) for participants with low levels

f this measure ( 𝛽= -0.38, 95%CI [-0.82, 0.06], p = 0.097) and no sig-

ificant effect for those with high levels ( 𝛽= 0.24, 95%CI [-0.21, 0.68],

 = 0.304; Supplementary Fig. 2). Thus, similar to Pool et al. ( Pool et al.,

022 ), but only descriptively, participants with low levels on the mea-

ure that corresponds with affective stress were trending towards habit
 r  

11 
ormation only following extensive training, whereas those with higher

evels of this measure tended to respond habitually already after short

raining (Supplementary Fig. 2). 

Manipulation checks: The outcome devaluation procedure signifi-

antly reduced participants’ hunger levels (t 122 = 14.16, p < 0.001; Fig.

 ) and differentially reduced participants’ pleasantness ratings toward

he devalued snack vs. the still-valued snack as manifested in a signif-

cant phase x outcome interaction effect (F 1,122 = 168.65, p < 0.001,

 

2 = 0.25). This supports a successful induction of selective satiation by

he outcome devaluation procedure. 

Exploratory: We further tested whether these changes in liking and

unger were similar between groups and found a minor yet significant

roup x time interaction effect for the hunger ratings (F 1,121 = 7.71, p <

.006, 𝜔 

2 = 0.02); see Supplementary Fig. 3) but no difference for the

iking ratings. The hunger effect was due to a slightly smaller decrease

n hunger ratings in the short training group compared with the exten-

ive training group, which may potentially indicate a slight difference

n motivation between the two training groups. 

. MRI results 

As reported above, we did not replicate the differential effect of

raining duration on sensitivity to outcome devaluation found by Tri-

omi et al. ( Tricomi et al., 2009 ). Therefore, we only report the di-

ect confirmatory pre-registered fMRI analyses in the putamen, corre-

ponding to the main result of the original manuscript. We will present

re-registered individual-differences analyses that examine neural cor-

elates of habit expression by correlating our neuroimaging data with
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Fig. 5. Manipulation checks of the outcome devaluation procedure. Liking ratings before and after outcome devaluation for the still-valued and devalued 

outcomes (left panel) and hunger ratings (right panel). 
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he pre-registered individual habit index measure. In addition, we will

eport exploratory analysis testing relevant fMRI activation differences

nd differences in training-induced changes in MD and FA between goal-

irected and habitual subgroups within each group, as identified by clus-

ering the behavioral data within each training group (See Subgroup-

ased exploratory analyses). 

. fMRI main results 

Below we report the fMRI results based on the block onset regres-

ors. Originally, we pre-registered for these analyses a design matrix

hat also includes regressors for the entire blocks. However, this yielded

igh collinearity (due to the temporal derivative regressors) and there-

ore we separated them into two GLMs. The first analysis of the block

nsets is reported in the pre-registered section and the additional analy-

is of the entire blocks was (as planned) added as an exploratory analysis

nd is reported below in the Exploratory fMRI analyses section. 

.1. Direct replication attempt of the main fMRI results found in the 

utamen by Tricomi et al. ( Tricomi et al., 2009 ) 

ROI and SVC analyses : We conducted the ROI and SVC analyses to

est changes in putamen sensitivity to task vs. rest cues following ex-

ensive training (last two vs. first two runs). This was done to provide

 comprehensive report of our replication attempt of the results found

y Tricomi et al. ( Tricomi et al., 2009 ) and to examine whether training

uration leads to increased fMRI putamen reactivity to cues associated

ith action and rewards. Comparing the average change in activity in

he putamen following extensive training ([task onset - rest onset] in the

ast two vs. first two runs) did not yield the hypothesized effect. This is

ot surprising as we did not obtain the behavioral results that allow us

o derive conclusions with respect to habit formation as a function of
12 
raining duration. Surprisingly, the results were in the opposite direc-

ion, indicating a general decrease in activation (right putamen, t 61 = -

.36, p = 0.022; or when (exploratorily) testing the bilateral putamen,

 61 = -2.60, p = 0.012). Correspondingly, the SVC analysis in the putamen

or the same contrast revealed a reduction in activation in the bilateral

utamen (right putamen: cluster size = 146, max Z-value = 4.83, cluster-

orrected p < 0.001; left putamen: cluster size = 94, max Z-value = 4.16,

luster-corrected p < 0.001; Fig. 6 ). Nevertheless, see Exploratory SVC

nalysis around the Tricomi et al. peak activation and visual inspection of

aw activations across the putamen (and Supplementary Fig. 4) for a po-

ential explanation of this surprising opposite than expected effect. 

.2. Individual differences in habit expression and related functional 

lasticity 

Training duration-induced functional plasticity and habit expres-

ion : We did not find significant correlations in any of the analyses be-

ween the behavioral habit index and training duration-related changes

n neural activity, neither when contrasting late vs. early stages of train-

ng nor when testing the presence of a linear trend throughout the entire

raining process in the extensive training group. 

Within-day effects: Examining within-day effects, i.e., changes in

ue sensitivity [task onset vs. rest onset] throughout daily training, did

ot reveal the pre-registered effect in the putamen. However, we did

nd in our exploratory yet pre-registered SVC analysis in the head of

audate a significant cluster in the left head of caudate both when con-

rasting the fourth vs. first (averaged) daily runs (cluster size = 13, max

-value = 3.96, cluster-corrected p = 0.028; Fig. 7 A) and when modelling

 linear trend pattern across all (averaged) daily runs (cluster size = 10,

ax Z-value = 3.84, cluster-corrected p = 0.048). The pattern of these re-

ults indicates that participants whose caudate maintained or reduced

ts reactivity to task cues tended to respond habitually (as revealed later
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Fig. 6. Replication attempt of the main fMRI results found in the putamen by Tricomi et al. ( Tricomi et al., 2009 ). (A) Results of small volume correction analysis in 

the bilateral putamen. The bilateral putamen reduced their sensitivity for task cues vs. rest cue following extensive training (last 2 runs vs. first 2 runs). Results were 

cluster corrected (p < 0.05). (B) Plots are presented for illustrative purposes of the effects in panel A: averaged contrast values of task onset vs. rest onset within the 

identified significant clusters in the bilateral putamen (shown in panel A) in both groups. Error bars indicate 68% confidence intervals (equivalent to ± 1 std error). 
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ollowing outcome devaluation), whereas participants tended to remain

oal-directed when activations in the head of caudate became more sen-

itive to task cues as the daily training progressed ( Fig. 7 B). 

Neural correlates of differential value-based cue reactivity and

abit expression : We tested whether changes in neural reactivity to-

ard valued vs. devalued block onsets following outcome devaluation

ere associated with habit expression. We did not find significant cor-

elations in our pre-registered ROIs. However, a whole-brain analysis

cross both groups revealed a significant negative correlation between

oal-directedness and activity toward valued vs. devalued cues in the

eft intracalcarine sulcus (cluster size = 43, max Z-value = 4.12, cluster-

orrected p = 0.037; Fig. 7 C). As can be seen in the illustrative panel ( Fig.

 D) this effect in this low-level visual region, stems mainly from greater

ctivation at the onset of the devalued cue relative to the still-valued

ue in participants who exhibit goal-directed behavior. 

We followed up this pre-registered analysis with an exploratory anal-

sis to examine whether this effect was linked to the experimental group.

o do so, we extracted the average contrast estimate (of [difference

etween valued and devalued after devaluation - difference between

alued and devalued before devaluation]) for each participant in the

dentified cluster. We then ran a multiple linear regression with the

abit index as the dependent variable and contrast value, group and

heir interaction as independent variables. We found no interaction ef-

ect (F 1,119 = 1.54, 𝛽= 0.21, 95%CI [-0.13,0.55], p = 0.217), which implies

hat the observed effect in the left intracalcarine sulcus is associated with

abit expression regardless of training duration. 

. DTI main results 

The following details regarding the DTI analysis did not appear in the

riginal pre-registration and are thus provided here for completeness.

irst, prior to running statistical analyses we spatially smoothed the MD

nd FA maps, with a 6 mm full-width-half-maximum Gaussian kernel.

or the statistical analyses we set a voxel-based threshold of T > 3.1 for

he MD and FA maps on which we employed the cluster mass threshold

of p < 0.05). 
13 
.1. Individual differences in habit expression and related micro-structural 

lasticity 

We did not find any significant correlations between the behavioral

abit index and training-induced changes in MD or FA in any of our ROIs

nd whole-brain analyses following either short or extensive training. 

0. Exploratory fMRI analyses 

0.1. Exploratory SVC analysis around the Tricomi et al. peak activation 

nd visual inspection of raw activations across the putamen 

Intrigued by the discrepancy between the results obtained in our ROI

nalysis of the putamen and those obtained by Tricomi et al ( Tricomi

t al., 2009 ) we explored the possibility that our results were driven by

ctivation changes in different subregions in the putamen than the sub-

egion identified by Tricomi et al. ( Tricomi et al., 2009 ). To this end we

reated a 5mm sphere mask centered around the peak MNI BOLD acti-

ation reported in Tricomi et al. ( Tricomi et al., 2009 ) and repeated the

ame procedure in an exploratory analysis. The results of this analysis

escriptively indicate a trend of an increase in bilateral putamen reactiv-

ty to learned cues following extensive training (t 61 = 1.923, p = 0.059).

oreover, a visual inspection of the unthresholded z-score maps of the

ame contrast reveal a clear differential response profile of the anterior

nd posterior subregions of the bilateral putamen, such that activation

to learned cues) decreases following extensive training in the anterior

arts and appears to increase (though to a smaller extent) in the pos-

erior parts (see Supplementary Fig. 4). We consider these findings in

he discussion section in the context of a proposal that distinct subre-

ions in the putamen are responsible for these different increasing and

ecreasing effects as a function of training. 

In addition, we repeated all of the planned individual differences

nd exploratory subgroup fMRI analyses (the latter are detailed below)

sing this focused sphere mask instead of the whole putamen mask to

est whether our hypothesized effects would be revealed and captured

hen focusing on this specific region. We did not find any significant

ffects in any of these analyses, which preventing us from relating any
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Fig. 7. Habit expression related functional plasticity. (A) An SVC analysis in the head of caudate in the extensive training group of the correlation between 

within-day training-induced changes (averaged run 4 vs. averaged run 1 of [task blocks onset vs. rest block onsets]) and individual habit index revealed a cluster 

with a positive correlation in the head of the left caudate. An increase in activation in this region was associated with increased goal-directed behavior and vice versa. 

(B) Plots are presented for illustrative purposes of the effects in panel A: averaged contrast values within the significant cluster in the left head of caudate (shown in 

panel A). (C) Whole-brain analysis of the correlation between changes in BOLD response toward the valued vs. devalued cues following devaluation (after vs. before 

devaluation of [valued block onsets vs. devalued block onsets] and individual habit index revealed a negative correlation in the left intracalcarine sulcus. Higher 

activation toward the devalued cue relative to the valued cue were associated with goal directed behavior and vice versa. (D) Plots are presented for illustrative 

purposes of the effects in panel C: averaged contrast values within the significant cluster in the left intracalcarine sulcus (shown in panel C). 

Notes: (1) fMRI results were cluster-corrected (p < 0.05). (2) The habit index is structured such that higher values indicate goal-directed behavior and values around 

0 indicate habitual responding. (3) Shaded area around the fitted lines in the scatter plot indicates 68% confidence intervals (equivalent to ± 1 std error). 
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ctivation patterns in this specific posterior putamen region (focused

round the peak activation found by Tricomi et al ( Tricomi et al., 2009 ))

ith sensitivity to outcome devaluation. 

0.2. Secondary parallel (whole-block) fMRI analysis 

We repeated the same task-fMRI analyses while modelling the entire

locks (rather than their onsets) at the first-level GLM. To account for

ultiple comparisons, we used a stricter cluster significance threshold

f p = 0.001. Running the within-group analyses in the extensive train-

ng group yielded a significant correlation between training duration-

nduced changes in neural activity (as modelled using a linear trend

nalysis) and the behavioral habit index in the right cuneal cortex (clus-

er size = 147, max Z-value = 4.20, cluster-corrected p < 0.001; Supple-

entary Fig. 5). This effect was driven by greater activations in this

egion during rest compared with task blocks in early stages of the task

and became indifferent in later stages) in habitual participants whereas

n goal-directed participants it was indifferent throughout the entire

ask. 

In addition, when testing the correlation between the behavioral

abit index and the change in BOLD response toward still-valued vs.
14 
evalued stimuli (throughout the entire blocks) following outcome de-

aluation we found an abundance of clusters in motor, somatosensory

nd visual regions (see all identified clusters in Supplementary Table 2).

he more participants demonstrated goal-directed behavior, the larger

he difference in the response in these regions was. This is not surprising

s it putatively reflects the fact that goal-directed participants are those

hat had reduced their relative responding toward the devalued vs. the

alued outcomes. 

1. Subgroup-based exploratory analyses 

In our pre-registration we considered the possibility of null results

nd stipulated that in such a case we will cluster participants within the

wo training groups into habitual and goal-directed subgroups to ex-

mine related neural differences. As noted above, when observing the

ehavioral data from the pre-registered analyses we noticed that the

evaluation-induced effects indicating goal-directed behavior in both

roups were driven only by a distinct subset of participants, whereas

any participants in both groups actually responded habitually. This

urther motivated the following goal-directed vs. habitual subgroup

nalysis approach. 
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Fig. 8. Cluster analysis. The behavioral habit index is best explained by two la- 

tent sub-groups identified within each group, as shown by a finite-mixture mod- 

elling analysis (testing k = 1 to 5 potential clusters and comparing their Bayesian 

Information Criterion). The sub-groups distinguish habitual participants (with 

scores around 0) from goal-directed participants (with larger scores). 
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1.1. Clustering participants into subgroups based on their habit index 

In this exploratory analysis we performed the following steps: (1) We

emoved extremely unengaged participants (with < 3SD response rate

uring the last training run from their group average). This resulted in

he removal of three participants from the extensive training group. (2)

 decrease in responding towards both outcomes to some extent could

e probably best explained by a general motivational effect and thus be

ligned with the interpretation of habitual behavior. However, our habit

ndex calculation would also characterize participants who extremely re-

uced their response rate toward both outcomes as habitual. We surmise

uch cases most likely represent goal-directed behavior that accounts for

eneral satiety. Thus, we re-calculated the habit index for participants

ho reduced their responding towards both snacks by more than 90%

ollowing outcome devaluation (three participants), by measuring the

ifference between the mean response rate toward both snacks before

evaluation minus the same measure after devaluation. (3) Following

revious work by some of the coauthors of this manuscript ( Pool et al.,

022 ), to identify latent subgroups in each training group we ran a finite

ixture model on the habit index using the Flexmix R package ( Leisch,

004 ). We ran the model using k = 1 to 5 clusters and found that two clus-

ers within each group were best suited to explain the habit index data

based on the lowest Bayesian Information Criterion; Fig. 8 ). The two
15 
lusters appear to separately capture habitual participants (with values

round 0) and goal-directed participants (with larger values). (4) As a

nal step we exploited the results of the cluster analysis to identify and

emove a minority of participants who appeared to respond irrationally

responding much more for the devalued compared to the still-valued

utcome during the extinction test). To achieve this, we removed par-

icipants that were classified in the “goal-directed ” cluster despite their

abit index being lower (rather than higher) than participants in the “ha-

itual cluster ” (See the left tail of the “goal-directed ” clusters in Fig. 8 ).

his resulted in the removal of three participants. We also performed a

ew analyses aimed to ensure that our inferred subgroups primarily rep-

esent habitual and goal-directed tendencies rather than other factors

see Supplementary Materials). 

Following this process, we had 57 participants in the extensive train-

ng group (21 goal-directed and 36 habitual) and 60 in the short training

roup (27 goal-directed and 33 habitual). This classification was then

sed along with the neuroimaging data to compare these inferred sub-

roups within each training condition to identify related functional and

icro-structural differences. 

1.2. Subgroup-based task-fMRI analysis 

Training duration-induced functional plasticity and tendency to

orm/express habits. We compared our inferred goal-directed and habit-

al subgroups within the extensive training group on each of the train-

ng duration-related contrasts (see examined contrasts 2-5 in Table 1 ).

hole-brain analyses revealed larger/increased training-induced BOLD

ctivations in habitual participants relative to goal-directed participants

n the bilateral intraparietal sulcus and surrounding regions. These

lusters were identified both when comparing the last two vs. first

wo training runs (left: cluster size = 136, max Z-value = 4.29, cluster-

orrected p < 0.001; right: cluster size = 92, max Z-value = 4.53, cluster-

orrected p < 0.001), as well as when comparing linear trends across the

ntire task (left: cluster size = 211, max Z-value = 4.01, cluster-corrected

 < 0.001; right: cluster size = 94, max Z-value = 4.27, cluster-corrected

 < 0.001; Fig. 9 A), suggesting this region is implicated in the tendency

o form habits. In the latter analysis we also identified a third ad-

acent cluster in the left supramarginal gyrus (cluster size = 77, max

-value = 4.02, cluster-corrected p = 0.004), and interestingly, a clus-

er in the dorsolateral-prefrontal cortex (dlPFC; cluster size = 59, max

-value = 4.65, cluster-corrected p = 0.017). These effects were mainly

riven by a decrease in activation in goal-directed participants from ini-

ial to later stages of training (see Fig. 9 B for example) suggesting the

xistence of early differences in neural processing between participants

ho were more likely to form and express habits vs. those who tended

o respond goal-directedly or were able to overcome habit expression

hen it was not adaptive. 

Interestingly, we did not find any effects in the opposite direction,

hat is, regions that relatively increased their cue-reactivity in the goal-

irected subgroup compared with the habitual subgroup. Additionally,

nalyzing the same contrasts using SVC analysis of any of our ROIs

id not yield a significant effect. Finally, note that in contrast to our

ndividual-differences analysis, we did not find any differential within-

ay effects between the two subgroups. 

Neural correlates of differential value-based cue reactivity and ten-

ency to form/express habits: We compared changes in neural reac-

ivity to valued vs. devalued cues following outcome devaluation be-

ween the two subgroups (separately within each of the training groups).

hile we did not find any difference in the extensive training group,

e have identified 3 clusters in the short training group indicating in-

reased activation for the valued vs. devalued snacks following out-

ome devaluation in the goal-directed subgroup compared with the ha-

itual subgroup (right superior parietal lobule: cluster size = 80, max

-value = 3.8, cluster-corrected p < 0.001; right postcentral gyrus cor-

ex: cluster size = 72, max Z-value = 4.38, cluster-corrected p = 0.002 and

luster size = 46, max Z-value = 4.4, cluster-corrected p = 0.027; Fig. 9 C).
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Fig. 9. Exploratory analysis of differential functional and microstructural plasticity in inferred subgroups of habitual and goal-directed participants. (A) Whole-brain 

analysis testing linear trends in activation across training of [task blocks onset vs. rest blocks onset] between habitual and goal-directed subgroups within the extensive 

training group. A linear trend was modelled by assigning linear weights to the training runs. The bilateral intraparietal sulcus reduced its activation in goal-directed 

participants compared with habitual participants as training progressed. (B) Plots are presented for illustrative purposes of the effects in panel A: averaged contrast 

values of task onset vs. rest onset within the identified significant clusters in the bilateral intraparietal sulcus (shown in panel A) in both subgroups. (C) Whole-brain 

analysis comparing changes in BOLD response toward the still-valued vs. devalued cues following outcome devaluation between habitual and goal-directed subgroups 

within the short training group. The right postcentral gyrus increased its activity toward the still-valued snack in goal-directed participants compared with habitual 

participants. (D) Plots are presented for illustrative purposes of the effects in panel C: averaged contrast values of the change of [valued vs. devalued block onsets] 

following outcome devaluation (after vs. before) in two significant clusters identified in the right postcentral gyrus (one of them is shown in panel C). (E) Whole-brain 

analysis comparing training-induced changes in FA between habitual and goal-directed subgroups within the extensive training group. We identified a cluster in the 

ventral tegmental area (VTA) and substantia nigra (SN) in which FA increased in habitual and decreased in goal-directed participants. (F) Plots are presented for 

illustrative purposes of the effects in panel E: averaged contrast values within the significant FA cluster in the VTA and SN (shown in panel E). 

Notes: (1) All DTI and fMRI results were cluster-corrected (p < 0.05). (2) The subgroups partition was based on finite mixture modelling of the individual habit index 

(which was calculated for each participant based on their task performance). (3) Error bars in bar plots indicate 68% confidence intervals (equivalent to ± 1 std 
error). 

T  

i  

9

1

 

t  

c  

w  

t  

i  

b  

m  

d  

g  

s  

c  

i  

g

1

 

M  

w  

r  

t  

a  

e  

s

1

 

o  

(  

i  

c  

t  

W  

e  
hese results imply that a tendency to quickly acquire and express habits

s related to reduced neural sensitivity to value-related changes ( Fig.

 D). 

1.3. Subgroup-based DTI analysis 

Training duration-induced micro-structural neural plasticity and

endency to form/express habits: We compared the training-induced

hanges in MD and FA between habitual and goal-directed subgroups

ithin each experimental group. Whole-brain analysis in the extensive

raining group revealed different patterns of training-induced changes

n FA in the ventral tegmental area (VTA) and substantia nigra (SN)

etween the habitual and goal-directed participants (cluster size = 249,

ax t 53 = 5.62, cluster-corrected p = 0.031; Fig. 9 E). This effect was

riven by an increase in FA in habitual participants and a decrease in

oal-directed participants ( Fig. 9 F), suggesting that differential micro-

tructural changes in midbrain dopaminergic regions may tilt action

ontrol to be dominated by one system or the other. We did not

dentify any differential micro-structural changes in the short training

roup. 
16 
2. A note on further exploratory analyses 

The scope of this work is comprehensive and included multi-modal

RI data analysis (task-fMRI and DTI) at several levels (individual,

ithin- and between- group analyses). Additionally, the pattern of our

esults led us to perform a substantial exploratory analysis in addition

o other planned secondary analyses. Therefore, for the sake of focus

nd clarity we have decided not to include in the scope of this work

xploratory analyses of the resting-state fMRI data and of the two-step

equential decision-making task. 

3. Discussion 

In this registered report, we first set out to examine the capacity

f the free-operant habit induction paradigm used by Tricomi et al.

 Tricomi et al., 2009 ) to induce habits in humans as a function of train-

ng duration and whether the putamen increases its cue reactivity ac-

ordingly, as was found in the original study. Similar to previous at-

empts to induce habits using this procedure in behavioral settings ( de

it et al., 2018 , Pool et al., 2022 ), we did not find the hypothesized

ffect of decreased devaluation sensitivity (as an index of habit forma-
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ion) following extensive compared with short training. Surprisingly, we

ound that in the original contrast used, the putamen reduced, rather

han increased, its activity following extensive training to cues asso-

iated with a rewarded action. Nevertheless, focusing specifically on

he posterior putamen (in an exploratory follow-up analysis), the sub-

egion of the putamen in which Tricomi et al. ( Tricomi et al., 2009 )

ound the increased activation (the posterior part), we found an ef-

ect trending in the same direction as in the original study (but given

he absence of the main hypothesized behavioral effect we cannot re-

ate it to habits). Furthermore, we used our relatively large sample, to

dentify functional and micro-structural neural correlates of individual

abit expression. We found that within-day increased activity (that is,

n increase across each of the three training days throughout the daily

raining, averaged across days) in the left head of caudate toward cues

aired with rewarded actions was associated with goal-directed behav-

or. Accordingly, decreased activity in this region was associated with

abitual responding. Additionally, we found that a low-level visual re-

ion (the left intracalcarine sulcus) was more reactive toward deval-

ed vs. still-valued cues in goal-directed participants but not in habit-

al participants. We did not identify any micro-structural plasticity (as

ndexed by changes in MD and FA) related with individual habit ex-

ression. Finally, as planned for the case of null behavioral effect, we

onducted an exploratory analysis comparing goal-directed and habit-

al subgroups (clustered based on the behavioral data) within each ex-

erimental group. We found a reduction in activation in the bilateral

ntraparietal sulcus towards cues associated with rewarded actions as

raining progressed in goal-directed participants but not in habitual ones

within the extensive training group). Additionally, within the short

raining group, we found that parietal regions (right superior parietal

obule and postcentral gyrus) became more reactive toward still-valued

s. devalued cues following outcome devaluation in goal-directed par-

icipants compared with habitual participants. Finally, we found differ-

ntial extensive training-induced changes in FA between habitual and

oal-directed participants in midbrain dopaminergic regions (VTA and

N), such that FA levels increased in habitual participants and decreased

n goal-directed ones. 

3.1. Tricomi et al.’s (2009) paradigm and experimental habit induction 

n humans 

The results of our pre-registered behavioral analysis are consistent

ith the results of the two replication attempts of Tricomi et al.’s

 Tricomi et al., 2009 ) behavioral findings, conducted by de Wit et al.

 de Wit et al., 2018 ) (two attempts) and a recent multi-laboratory work

y Pool et al. ( Pool et al., 2022 ). In the latter, the researchers conducted

 large-scale replication attempt of this paradigm using five different

amples across four different sites. In both de Wit et al. ( de Wit et al.,

018 ), Pool et al. ( Pool et al., 2022 ) and the present work, the statistical

nalysis demonstrated that participants in both groups were sensitive to

utcome devaluation, manifested as a relatively greater reduction in re-

ponding toward the devalued compared with the still-valued outcome

although this effect was driven by a small subset of participants whereas

ost participants were insensitive to outcome devaluation; see more

elow). Importantly, in contrast to the original Tricomi et al. findings

 Tricomi et al., 2009 ), participants’ sensitivity to devaluation was not

educed following extensive training. Note that Pool et al. ( Pool et al.,

022 ) found that the affective component of stress moderated the train-

ng duration effects on sensitivity to outcome devaluation. Specifically,

articipants low on this measure demonstrated reduced sensitivity to

evaluation following extensive vs. short training, whereas participants

igh on this measure responded habitually already after a short train-

ng. In an exploratory analysis, we examined if this effect was present in

ur data as well. Although not conclusive, we found a trend indicating a

oderating role for the affective component of stress on habit formation

s a function of training extension (for an elaborated discussion on this

otential moderating role see ( Pool et al., 2022 )). As Pool et al. had a
17 
ubstantially larger sample, the fact that this effect was only trending in

he present data may reflect reduced power of this smaller sample size.

uture targeted pre-registered investigations are required to establish

nd characterize the role of stress affect in action control. Still, taken

ogether, the present work together with the aforementioned previous

eplication attempts form a solid body of evidence suggesting that the

ricomi et al. paradigm ( Tricomi et al., 2009 ) is of limited utility in

erms of its capacity to elicit training-related effects on the behavioral

xpression of habits in a robust manner. 

Particular contributions of the present work to determining the effi-

acy of Tricomi et al.’s procedure ( Tricomi et al., 2009 ) include the in-

olvement of two of the original study’s coauthors (first and last authors)

hich helps to prevent significant misalignments of the methods and

nalyses between the original and the present work ( Janz and Freese,

021 ). Another important and unique contribution of this work is that,

hile the previous replication attempts were behavior-only studies, in

he present work the behavioral task was performed during fMRI scans,

imilar to the original study. As mentioned above, Pool et al. ( Pool et

l., 2022 ) found that participants with lower rates of the affective com-

onent of stress (which includes anxiety) exemplify the hypothesized ef-

ect of training extension on habit formation. In light of recent evidence

howing lower rates of anxiety in participants enrolling in fMRI studies

ompared to participants enrolling in behavioral studies ( Charpentier et

l., 2021 ), it has been suggested that a self-selection bias may have been

esponsible for the contradictory results obtained when utilizing the Tri-

omi et al.’s procedure ( Tricomi et al., 2009 ) in different experimental

ettings ( Pool et al., 2022 ). Specifically, in the behavior-only replication

ttempts participants may have been self-selected to have higher anx-

ety rates compared with participants in the original fMRI study. Such

n explanation could have potentially reconciled the discrepancies be-

ween the effect observed in Tricomi et al. ( Tricomi et al., 2009 ) and the

ack of similar effects in De Wit et al. ( de Wit et al., 2018 ) and Pool et al.

 Pool et al., 2022 ). Here, by using an fMRI setting, we tested this pos-

ibility directly and our results provide evidence that the experimental

etting along with potential anxiety-based self-selection biases are not

ufficient to account for the discrepancy between the original study and

ubsequent replication attempts. Whether or not a selection bias does

ccur in a given fMRI study will depend on the specific recruitment pro-

edures used at particular research centers, and thus it remains possible

hat this bias did contribute to differences between the behavioral ef-

ects observed in the current and the original study. However, it is most

arsimonious to assume that either the main behavioral result of the

riginal study was a false positive or that the discrepancies in results

re attributable to other unknown factors. 

Similar to Pool et al. ( Pool et al., 2022 ), and largely consistent with

he results obtained by De Wit et al. when the researchers used the same

rocedure ( de Wit et al., 2018 ), close inspection of the data obtained in

ur study (supported by empirical evidence obtained by the cluster anal-

sis of the habit index) revealed an interesting finding. In both groups,

hile the statistical analysis indicated the presence of sensitivity to out-

ome devaluation and thereby the dominance of goal-directed behav-

or, in practice, only a small subset of participants that responded in a

oal-directed manner drove this effect, whereas the majority of partic-

pants responded habitually (i.e., were insensitive to outcome devalua-

ion). This suggests, perhaps counterintuitively, that this paradigm fails

o exemplify habit formation as a function of training duration due to

t being too prone to rapidly induce habits, instead of not being able

o induce habits following extensive training. At least as it is currently

eing used, this paradigm appears not to be sensitive enough to capture

ufficient variability in sensitivity to outcome devaluation. Participants’

apid development of habit-like behavior (insensitivity to outcome de-

aluation) hinders the detection of effects induced by the additional

raining sessions in the 3-day group. Therefore, future efforts to change

his procedure or establish a new one to reliably induce habits through

raining extension, may benefit from initially focusing on methods to

revent rapid manifestation of insensitivity to outcome devolution. One
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lear target for modification in future studies is the reinforcement sched-

le. The Tricomi et al. paradigm ( Tricomi et al., 2009 ) uses a variable

nterval (VI) reinforcement schedule which has been shown to enhance

abit formation compared with variable ratio (VR) reinforcement sched-

le in rodents ( Dickinson et al., 1983 , Wiltgen et al., 2012 , Gremel and

osta, 2013 , Perez and Dickinson, 2020 ). While the capacity of these

wo reinforcement schedules in forming habits have not been directly

ompared in humans, our evidence may imply that a similar effect in hu-

ans exists and motivates the use of VR schedules in future studies in

rder to avoid rapid habit formation. Furthermore, based on other stud-

es and the present study, it appears that habit formation and expression

ary considerably across individuals and seem to be susceptible to multi-

le individual differences factors and moderating effects (e.g., ( Schwabe

nd Wolf, 2009 , Pool et al., 2022 , Gillan et al., 2015 )). Investing more

ffort in identifying these factors and, in turn, accounting for them, as

ell as collecting large datasets, may be necessary in order to establish

xperimental habit induction in humans. 

Another possible limitation of this paradigm ( Tricomi et al., 2009 )

s that it is unclear whether the devaluation test as implemented, is suf-

cient to adequately distinguish goal-directed from habitual behavior.

sing a test that can confidently attribute “goal-directedness ” to ob-

erved actions (to ensure that an unchanged response pattern following

utcome devaluation is indeed habitual) was recently suggested as a cri-

erion that has to be satisfied in order to reliably interpret the results of

esearch in the field ( De Houwer et al., 2018 ). It is possible that the pro-

edure we used here does not satisfy this criterion for various possible

easons, including the following: (1) Participants were most likely aware

hat they did not have to eat their potential devalued winnings during

he test session; (2) Responding during the test toward the devalued

utcome imposed little to no cost at all on participants. The only cost

as the supposedly physical effort of pressing a keyboard button (which

s negligible unless repeated very rapidly). We suggest that it is likely

hat at least some of the participants may have responded toward the

evalued outcome simply as it had no tangible cost and the only viable

lternative was to sit and stare at a static fractal image (which may not

e preferable for some); (3) Similarly, the potential cognitive effort of

ithholding the signaled response may have been larger than the physi-

al effort of pressing the button, and these two types of efforts may have

een thoughtfully considered in a goal-directed manner. Therefore, we

uggest that future attempts to establish experimental habit induction

rocedures in humans could put more of an emphasis on aligning partic-

pants’ incentives with their actions. To achieve this, future procedures

ould incorporate a tangible cost imposed on each action (see ( Gillan

t al., 2015 ) for such implementation in the context of the two-step

ask with incorporated outcome devaluation) and allow the utilization

f other actions beside choosing between responding or doing nothing. 

3.2. The putamen’s role in training and habitual action control 

A key neural hub thought to be dominant in acquiring and execut-

ng habitual behavior is the putamen ( Balleine and O’Doherty, 2010 ).

his motivated us to place it in the center of various analyses conducted

s part of this research and to hypothesize it would be correlated with

abit expression at both the group and individual levels. Comparing

ue-related BOLD activations in early vs. final stages of extensive train-

ng, similar to the analysis conducted by Tricomi et al. ( Tricomi et al.,

009 ), did not reveal a similar effect in the putamen. This, by itself,

an be simply explained as consistent with the lack of stronger habit

ormation following extensive training observed in the current work (in

ontrast to the Tricomi et al.’s finding ( Tricomi et al., 2009 )). How-

ver, not only did we not find an increase, but the bilateral putamen

educed its BOLD activation as training progressed. Notably, while this

esult is consistent with a body of research reporting a reduction in the

utamen activation as training progresses (e.g., ( Poldrack et al., 2005 ,

rovelli et al., 2011 ), for review see ( Hélie et al., 2015 )) it is inconsis-

ent with Tricomi et al. and other research showing increased activity
18 
n the putamen as training progresses ( Tricomi et al., 2009 , Floyer-Lea

nd Matthews, 2004 , Fernández-Seara et al., 2009 , Wunderlich et al.,

012 ). This discrepancy can be reconciled by taking into consideration

he specific subregions in the putamen where the activations were ob-

erved. In the Tricomi et al. study ( Tricomi et al., 2009 ), the posterior

utamen was specifically found to show an increasing activation profile

ith training. This region is anatomically distinct from the more anterior

spects of the putamen in which the decreasing activation profile was

ound in the present study. In an exploratory analysis focusing on the

maller specific region of the posterior putamen reported by Tricomi et

l. ( Tricomi et al., 2009 ), we did find a statistical trend toward increas-

ng activity as a function of training (albeit not quite reaching statisti-

al significance). Accordingly, differential response profiles between the

nterior and posterior parts of the putamen were also clearly observed

hen visually inspecting raw training-induced activations across the bi-

ateral putamen. Notably, these patterns (including the statistical trend

n the posterior putamen) may be underestimated in light of recent evi-

ence showing that multiband scanning protocols (as used in this work

ut not in Tricomi et al. ( Tricomi et al., 2009 )) compromise the signal

uality in regions located in the center of the brain ( Srirangarajan et al.,

021 ). Our results could be interpreted as being broadly consistent with

revious literature finding decreasing activation in the anterior (asso-

iative) putamen and increasing activation in the posterior (sensorimo-

or) putamen with training ( Tricomi et al., 2009 , Poldrack et al., 2005 ,

rovelli et al., 2011 , Floyer-Lea and Matthews, 2004 , Fernández-Seara

t al., 2009 , Wunderlich et al., 2012 ). Indeed, a transfer of motor repre-

entations is suggested to occur from anterior to posterior putamen as a

unction of training ( Miyachi et al., 1997 , Miyachi et al., 2002 , Lehéricy

t al., 2005 ). These opposing effects have not often been seen side by

ide in the same study and further research is needed to disentangle the

pecific role of different putamen subregions and their time-dependent

ngagement patterns in human action control. Perhaps a further func-

ional subdivision of both the associative and particularly the senso-

imotor putamen is required to gain a detailed understanding of the

utamen’s contribution to instrumental learning. In the present study,

t should be emphasized that due to the lack of behavioral effects of

raining duration on sensitivity to outcome devaluation, any training

uration-induced changes in the putamen observed at the group level

ould not be attributed to the expression of habitual/goal-directed be-

avior but solely to the effects of training. 

Contrary to our hypotheses, we did not find any evidence for func-

ional or microstructural plasticity in the putamen associated with in-

ividual habit expression (measured as sensitivity to outcome devalu-

tion), not even when we clustered participants into goal-directed and

abitual sub-groups. In rodents, convincing evidence dissociating the

ontributions of the dorsomedial striatum (homologous to the human

nterior caudate) to goal-directed behavior and dorsolateral striatum

homologous to the human putamen) to habitual responding ( Yin et al.,

005 , Yin et al., 2004 ) have spurred the idea of a shift in action control

etween these regions (from the former to the latter) as goal-directed

ehavior shifts into habits ( Yin and Knowlton, 2006 ). Similarly, it is

hought that a corresponding shift from goal-directed to habitual be-

avior in humans predominantly results from a transition in action con-

rol from the anterior caudate to the putamen ( Balleine and O’Doherty,

010 ). While some evidence, although correlational, supports this idea

 Tricomi et al., 2009 , McNamee et al., 2015 , Soares et al., 2012 ), our

ndings join a growing body of findings that do not find evidence for

uch a transition in healthy individuals ( Brovelli et al., 2011 , Schwabe et

l., 2012 , Watson et al., 2018 , Ersche et al., 2021 ). Notably, targeting in-

ividual differences also yielded mixed results regarding the putamen’s

ole in determining habitual performance. While De wit et al. ( de Wit

t al., 2012 ) found that putamen-premotor cortex white matter tract

trength, as well as putamen gray matter density, were associated with

abitual slip of actions in healthy individuals, other more recent studies

ave not found functional or structural neural correlates between the

utamen and individual differences in habit expression ( Watson et al.,
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018 , Ersche et al., 2021 , Zwosta et al., 2018 ). One potential explanation

ould be that the procedures used to operationalize and measure habits

o not capture well or in a consistent manner the construct they intend

o. This could lead to mixed results regarding the neural substrates of

uman habitual control. Alternatively, habit expression may be subject

o multiple environmental and psychological transient as well as stable

actors, rendering related effects subtle and unstable. In that eventual-

ty, even if a more effective task paradigm were to be used, large sample

izes are likely to be required to reliably implicate and characterize the

nderlying neural mechanisms. Relatedly, the striatum may be differen-

ially recruited as a function of the nature of the task involved ( Patterson

nd Knowlton, 2018 ). Tasks employing a sequence of actions often find

ncreased activation in the sensorimotor striatum (e.g., ( Poldrack et al.,

005 , Lehéricy et al., 2005 )), whereas single-motor action tasks in ro-

ents report a training duration- related reduction in the amount of task-

elated active neurons in this region (e.g., ( Barnes et al., 2005 , Tang et

l., 2007 )). Helie et al. ( Hélie et al., 2015 ) suggested that increased acti-

ation in the sensorimotor striatum following extensive training occurs

fter response selection and is in fact associated with response-response

ssociations required for automatically executing a sequence of actions.

utcome devaluation studies in humans typically use a single action,

uch as a simple button press, which may thereby not be controlled by

he putamen or alternatively, introduce a very subtle effect, frequently

ndetected. Finally, we cannot rule out the possibility that the role of

he human (posterior) putamen in habitual control is not equivalent to

he role of the dorsolateral striatum in rodents as commonly assumed.

t is possible that humans’ advanced ability to engage in goal-directed

lanning and execution implies and/or generates different neural imple-

entations of habitual control. Alternatively, changes in neural regions

nd circuits associated with goal-directed behavior as behavior becomes

abitual may be more robust and thus more readily captured in the cur-

ent available methods, as seen in the present and other studies (e.g.,

 Zwosta et al., 2018 )). As a final note, it is certainly possible that the

utamen plays a role in habit learning but that whether or not habits

re expressed in a given situation is contingent on factors or gated by

rain regions that are not directly associated with the level of training-

nduced functional or microstructural plasticity in the putamen. 

3.3. Neural correlates of the individual tendency to form/express habits 

We found that patterns of daily activation changes in the left head

f caudate (but not changes across the entire three days of training)

redicted individuals’ sensitivity to outcome devaluation. This is con-

istent with the notion that sensitivity to outcome devaluation may be

anifested in differential neural activity in goal-directed regions (e.g.,

 Zwosta et al., 2018 )). This finding is also aligned with evidence re-

ating caudate-vmPFC white matter tract strength ( de Wit et al., 2012 )

nd caudate increased activation during trials involving a valued out-

ome ( Watson et al., 2018 ) with individual goal-directed action control.

n important distinction regarding the novelty of this finding is that it

llustrates the importance of reoccurring patterns of within-session acti-

ation changes in general and the implication (through such a process)

f the head of caudate in maintaining goal-directed behavior. Our re-

ults suggest that each training session is to some extent a new context

hat re-initiates the engagement of the head of caudate. Decreased reac-

ivity of this region is indicative of reduced sensitivity to outcome de-

aluation whereas an increase is associated with goal-directed behavior.

his finding perhaps implies that if the training would have continued

i.e., involve further sessions), at some point (varied across individuals),

s the slightly new contexts that each day constitute generalize (and a

abit is simultaneously formed), the activation patterns in the head of

audate of the initially more “goal-directed ” participants would become

imilar to those of the “habitual ” participants and render their behavior

abitual. This idea is supported by research showing that the caudate

ncodes the contingency between actions and outcome ( Tanaka et al.,

008 , Tricomi et al., 2004 ) which is crucial for goal-directed behavior.
19 
owever, our results here are correlational and this idea is speculative

nd should be directly tested to be verified. Yet, if indeed verified, the

ead of caudate may putatively be used as an online within-session/day

arker of habit formation. Notably, in contrast to the caudate, we did

ot find any functional or structural effects associated with sensitivity

o outcome devaluation in the vmPFC. This region has been largely im-

licated in goal-directed behavior (e.g., ( Valentin et al., 2007 , de Wit

t al., 2009 , de Wit et al., 2012 , McNamee et al., 2015 , Eryilmaz et al.,

017 )). Perhaps as most participants in our study had become habitual

lready after a short training, there was not enough variance in the data

o observe an effect in the vmPFC. This region is known to have a major

ole in processing the value of an outcome (e.g., ( Hare et al., 2008 )),

hich, taken together with the effect found in the head of caudate, may

ndicate that in the current procedure value signals are less predictive

f action control than contingency signals. 

Another novel finding of this work is that individual sensitivity to

utcome devaluation involves differential processing of valued vs. de-

alued cues in the left primary visual cortex. Goal-directed behavior

as associated with greater activation in this region toward a deval-

ed cue (as a function of the value reduction). This suggests that ac-

ion control is directly related to differential neural processing of pre-

ictive stimuli in lower-level sensory regions, and thus to earlier stages

f the neural processing of external information, than might have been

reviously thought. To the best of our knowledge, to date only one

tudy implicated visual regions in goal-directed/habitual behavior in

umans ( Liljeholm et al., 2015 ). That research demonstrated greater

ctivation in the middle and superior occipital cortex toward a condi-

ion that involved stimulus-response encoding (which presumably un-

erlies habitual action control) vs. a condition that encouraged the uti-

ization of response-outcome associations (which presumably underlie

oal-directed action control). However, that study implicated different

ccipital regions (of higher visual processing levels) than the regions

dentified in the current study (the primary visual cortex). Also, as there

re known projections from the primary visual cortex to the dorsome-

ial striatum ( McGeorge and Faull, 1989 ) (the rodent homologue of the

uman caudate), it is possible that the differential processing of cue val-

es in this region contributes to the effect we found in the left head of

audate. Finally, this finding can be possibly integrated with the ex-

loratory finding showing that (within the short training group) the

ight postcentral gyrus and right superior parietal lobule were more re-

ctive to valued vs. devalued cues in goal-directed participants but not

n habitual ones. In primates, the superior parietal lobule is suggested to

ntegrate visual and somatosensory information to control goal-directed

ctions executed by the arms (See ( Gamberini et al., 2021 ) for review).

aken together, it is possible that increased sensitivity to devalued cues

n low-level visual regions in individuals with higher tendency for goal-

irected behavior is, at least to some extent, directly associated with

he increased sensitivity in the postcentral gyrus and superior parietal

obule. For example, the increased activity toward devalued cues in the

ower-level visual regions may inhibit activations in the superior pari-

tal lobule and postcentral gyrus, which in turn results in a differential

ctivation in favor of the valued cues in these regions. 

Our subgroup-based analysis, in which we divided participants in

ach experimental group to goal-directed and habitual subgroups based

n their demonstrated sensitivity to outcome devaluation, has related a

ew other regions of both the sensorimotor and associative parts of the

ortico-striatal circuits ( Yin and Knowlton, 2006 , Ashby et al., 2010 )

o habit expression. We found that the bilateral intraparietal sulci, the

eft supramarginal gyrus (part of the inferior parietal lobule) and the

lPFC decreased their activity as training progressed in participants that

aintained goal-directed behavior (but not in those that responded ha-

itually) following extensive training. This decrease in activation was

erived from elevated activation levels in early stages of training in

oal-directed participants which was absent in habitual participants.

oth the inferior posterior parietal lobe and dlPFC play a major role

n goal-directed behavior by implementing related required processes.
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hey both constitute a prominent part of the fronto-parietal brain net-

ork (a component of the cognitive control network ( Cole and Schnei-

er, 2007 )) which facilitates cognitive control and flexible adaptation to

ask demands (adaptive control) ( Cole et al., 2013 ). They have also been

irectly associated with planning processes ( Wunderlich et al., 2012 ),

ave shown to be involved in state space representation (and model-

ased learning) ( Gläscher et al., 2010 ) and were implicated in stimulus-

ependent attentional shift (exogenous adjustment) ( Sohn et al., 2000 ).

The role of these regions (the inferior posterior parietal lobe and

lPFC) in the context of habit learning was highlighted by a few stud-

es. Evidence implicating the inferior parietal lobule in sensitivity to

utcome devaluation was provided by Liljeholm et al. ( Liljeholm et al.,

015 ) that found that greater discriminatory activation in this region be-

ween stimulus-response and response-outcome pairings predicted sen-

itivity to outcome devaluation. Contradictory findings (at first glance)

o our work were found by Poldrack et al. ( Poldrack et al., 2005 ) and

wosta et al. ( Zwosta et al., 2018 ). Poldrack et al. ( Poldrack et al., 2005 )

ound practice-related decreased activity in both the parietal and dlPFC

egions, which were indirectly associated with the formation of behav-

oral automaticity (as indicated by dual-task interference elimination).

evertheless, that study focused on skill learning and used the serial

eaction time (SRT) task ( Nissen and Bullemer, 1987 ) (either in single

r dual-task conditions) which demands substantial cognitive resources,

specially when compared to our non-challenging free-operant task. It

s possible that when high cognitive resources are required, the dlPFC

nd inferior parietal lobules are more engaged in early learning stages

lso in individuals who tend to quickly express automatic behavior. An-

ther key difference is that automaticity in the SRT task is constantly

esired, that is, participants are not placed in a condition aimed to ex-

mine their capacity to adjust their learned behavior (in which they ben-

fit from overcoming acquired automaticity). Goal-directed participants

n our procedure may have differentiated from habitual participants not

y their capacity to engage in habitual action control but rather by their

bility to switch back when the circumstances have changed. 

Zwosta et al. ( Zwosta et al., 2018 ) found that stronger habit expres-

ion was associated with a larger decrease in the inferior parietal lobule

cross training, an effect in the opposite direction than reported here.

otably, that task’s operationalization of the investiagted processes was

ery different from ours. It is composed of binary choice trials and

hange in explicit goals between task phases. Thus, the possibility of

ubstantial involvement of the inferior parietal lobule also in partici-

ants that tended to quickly express habits applies to that work as well.

mportantly, that work employed a relatively short training (across one

ay) and therefore focused on changes within a single session rather

han across multiple (spaced) sessions. This raises the possibility that

cross different timescales different patterns of functional plasticity in

he inferior parietal lobe play a role in habit learning. Another important

mphasis regarding the work by Zwosta et al. ( Zwosta et al., 2018 ) is

hat habitual behavior was not indexed as sensitivity to outcome deval-

ation but rather as increased error rates and increased response time in

rials that were incongruent with respect to previous learning strategies

contrasting putative goal-directed and habitual action control). The ef-

ect in the inferior parietal lobule was only observed for the response

ime measure but not for the error measure. Notably, the latter is more

quivalent to responses that are insensitive to outcome devaluation than

he former. 

Our work provides novel evidence that significant recruitment of the

nferior parietal and dlPFC regions at early stages of training can lead

o larger flexibility to adjust instrumental behavior when necessary in

ater stages. Thus, while Zwosta et al. ( Zwosta et al., 2018 ) speculated

hat individual differences in habit expression are mediated by inferior

arietal lobule activations, which reflects the anticipation for a specific

utcome at the end of training, our results suggest that there might be

 critical phase at the beginning of training in which activations in this

egion may take part in forming the neural machinery required for later

ehavioral adaptations. The later use of this machinery appears to no
20 
onger require the particular involvement of the inferior parietal lobule.

uch interpretation implies that activation in these regions can perhaps

e used as an early-stage neural marker of the likelihood of recruiting

oal-directed action control. Such neural marker could putatively be

sed to identify individuals’ tendency to form and express habits. More

esearch is needed to understand whether such activations are associ-

ted with a specific state or are stable within individuals, namely reoccur

ver similar and different tasks, and thus represent an individual trait. 

The cognitive and mental processes relating these early activations

ith later goal-directed performance can also be a target for future ex-

loration. A possible explanation for the role of these early-stage activa-

ions may rely on other related findings about the role of these regions.

ohn et al. ( Sohn et al., 2000 ) implicated several parietal regions, in-

luding the posterior inferior parietal lobe in task switching. Glascher

t al. ( Gläscher et al., 2010 ) have shown that activity in the dlPFC re-

ects state prediction errors, thereby having a major role in encoding

he model of the environment in model-based reinforcement learning,

nd Mcnamee et al. ( McNamee et al., 2015 ) found that this region en-

oded information about both the identities of actions and outcomes,

uggesting it is involved in encoding such model. Taken together, it may

e that increased activations in the dlPFC and inferior parietal regions

enerate a good representation (model) of the task states, action and

elated outcomes, and perhaps generate a different “sub task ” represen-

ation for each associative structure. Establishing and rehearsing these

epresentations at initial stages of training may have made it easier in

ater stages to distinguish between the different conditions (valued vs.

evalued) once it had become beneficial to do so. Another important

bservation, made by Zwosta et al. ( Zwosta et al., 2018 ) and reinforced

y the current study is that individual differences in habit expression

ppear to mainly stem from individual differences in regions associated

ith goal-directed rather than habitual action control. This may indicate

hat individual differences in regions of the goal-directed system are per-

aps more common and more substantial than in regions of the habitual

ystem or alternatively, that their effects on behavior are stronger. 

Another novel finding of this work is the identification of differ-

ntial extensive training- induced microstructural changes in midbrain

opaminergic regions (VTA/SN) and their surroundings between goal-

irected and habitual participants. FA was found to elevate in these re-

ions for habitual participants and was reduced for goal-directed ones.

opamine is thought to play a crucial role in habit formation and in

oderating the balance between goal-directed and habitual action con-

rol ( Balleine and O’Doherty, 2010 , Poldrack, 2021 ), but the exact mech-

nisms by which it acts are not yet fully understood. Most notably, re-

earch in animals and humans often ascribe a different, even oppos-

ng, role for dopamine in action control. Whereas dopamine has been

hown to promote habit formation in rodents ( Nelson and Killcross,

006 , Faure et al., 2005 ) (but note the D1 and D2 receptors’ dissociable

ffects, promoting and depressing habit formation, respectively ( Nelson

nd Killcross, 2013 )), it was found to enhance goal-directed behavior

and model-based learning) ( De Wit et al., 2012 , De Wit et al., 2011 ,

underlich et al., 2012 , Deserno et al., 2015 , Sharp et al., 2016 ) in hu-

ans (but see ( Voon et al., 2020 )). As far as we know, habit research

n humans has yet to uncover direct associations between habit forma-

ion and structural or functional plasticity in dopaminergic regions but

ather only in their efferents’ target regions. We show here that different

atterns of microstructural plasticity in midbrain dopaminergic regions

ay underlie shifts in action control or the ability to adjust behavior

hen the goal of a behavior ceases to be desired. It is important to note

ere, that since (1) this region is comprised of both white and gray mat-

er and the cluster found covers a relatively large area, (2) we did not

nd MD changes and (3) the FA measure can be affected by various fac-

ors in the tissue microstructure ( Alexander et al., 2007 ), any attempt to

nterpret the underlying neural and cognitive processes associated with

hese microstructural changes would be highly speculative and further

ocused research is required to characterize these processes. Based on

ur findings, the only suggestion we can make in this context is that
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he individual tendency to acquire and express habits may stem from

ifferential dopaminergic modulation of goal-directed and habit neural

ircuits. In support of this idea, many of the regions in which we identi-

ed differential activation patterns for individuals who differed in their

endency to express habits, are targets of midbrain dopaminergic neu-

ons ( Hassan and Benarroch, 2015 ). This includes the head of caudate,

osterior parietal regions and the dlPFC. As fMRI BOLD activations are

ainly a product of neural processing localized around the afferent in-

uts region ( Logothetis, 2002 ), in this work, by using DTI indices, we

ight have traced back the source of activations in cortical and striatal

egions (identified as implicated in goal-directed action control) that

issociates individuals with different habit learning tendencies. It is im-

ortant to emphasize with respect to all of the findings obtained through

he subgroup analysis that this analysis, although conceptually planned

or the case of a null behavioral effect, is exploratory and as such its

esults should be further validated in targeted future research. 

3.4. Potential future exploitation of this work’s data 

As part of this work we collected versatile behavioral, self-report

nd multi-modal neuroimaging data from a relatively large sample. We

ested several pre-registered hypotheses which we deemed to be of high

mportance to the field, as well as conducted some closely-related fol-

ow up exploratory analyses. Nevertheless our analyses are by no means

xhaustive and we hope our data could be used to test additional hy-

otheses and provide more insights on human action control dynamics

nd other instrumental training related effects. For example, due to our

vidence suggesting highly localized increased activation in the poste-

ior putamen as a function of training duration (Supplementary Fig. 4),

t might be worthwhile to adopt different analysis approaches than used

ere to gain a more comprehensive understanding of its role. These in-

lude (but are not limited to) the following: (1) Use a native space ap-

roach in which the focus is on a few voxels located at the posterior

utamen in each participant’s native space activation maps. (2) Use a

ulti-variate pattern analysis (MVPA) to test the hypothesis of special-

zed functional regions within the striatum. (3) Use a psychophysiolog-

cal interaction (PPI) analysis to tap into functional connectivity associ-

ted with training duration and action control. (4) Use frequency-based

nalysis to identify training induced changes and possible correlations

ith individual levels of habit formation. Another interesting future di-

ection, in light of Pool et al.’s ( Pool et al., 2022 ) and our findings on

he potential moderating role of stress affect on the amount of training

equired for habit formation, might be to examine whether individual

evels of stress affect parametrically modulate neural activity related to

raining duration and action control. Lastly, our data can also be used to

ain more insights into the potential effects of other factors, including

hose inherent to this paradigm (such as satiety- and training- related

ndices), on habit expression. The identification of both potential con-

ounds and moderating factors can inform future research in the field

nd expand our understanding of habit learning. 

4. Conclusions 

In conclusion, in this well-powered registered report, we provide fur-

her evidence that the Tricomi et al. paradigm ( Tricomi et al., 2009 ) is

ot well-suited to reliably demonstrate the effect of habit formation as a

unction of training duration, potentially due to a rapid manifestation of

abit-like behavior, which is expressed already after short training. Fur-

hermore, we were not able to relate any functional or microstructural

lasticity in the putamen with individual habit expression. Instead, re-

ions commonly implicated in goal-directed regions were most predic-

ive of individual habit expression. We show that reoccurring within-

ay increased activations in the head of caudate throughout training

nd early-stage elevated activations in frontoparietal regions (mainly in

he inferior parietal lobe and the dlPFC) were associated with goal di-

ected behavior (and vice versa). Additionally, we found evidence that
21 
arger neural reactivity toward devalued cues in the primary visual cor-

ex and increased reactivity in favor of still-valued cues in somatosen-

ory and superior parietal regions are related to individual tendencies

o express goal-directed behavior (and vice versa). Finally, we found

hat differential patterns of training-related microstructural plasticity

n midbrain dopaminergic regions were indicative of habit expression.

aken together, this work provides new insights regarding the under-

ying putative neural mechanisms involved in individual habit learning

nd motivates the development of novel, well-informed, procedures for

xperimental habit induction in humans in order to accelerate research

n the field. 
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