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Abstract
Habits are a prominent feature of both adaptive and maladaptive behavior. Yet, despite substantial research efforts, there are 
currently no well-established experimental procedures for habit induction in humans. It is likely that laboratory experimental 
settings, as well as the session-based structure typically used in controlled experiments (also outside the lab), impose serious 
constraints on studying habits and other effects that are sensitive to context, motivation, and training duration and frequency. 
To overcome these challenges, we devised a unique real-world free-operant task structure, implemented through a novel 
smartphone application, whereby participants could freely enter the app (24 hours a day, 7 days a week) to win rewards. This 
procedure is free of typical laboratory constraints, yet well controlled. Using the canonical sensitivity to outcome devaluation 
criterion, we successfully demonstrated habit formation as a function of training duration, a long-standing challenge in the 
field. Additionally, we show a positive relationship between multiple facets of engagement/motivation and goal-directedness. 
We suggest that our novel paradigm can be used to study the neurobehavioral and psychological mechanism underlying 
habits in humans. Moreover, the real-world free-operant framework can potentially be used to examine other instrumental 
behavior-related questions, with greater face validity in naturalistic conditions.

Keywords  Habits · Goal-directed behavior · Motivation · Model-based learning · Model-free learning · Free-operant · Real-
world · Mobile application · Reward · Learning

Introduction

Habits are a fundamental feature of both adaptive and mala-
daptive human behavior. According to the dual process 
theory of action control (De Wit & Dickinson, 2009; Dick-
inson, 1985), newly learned behaviors, acquired through the 
process of instrumental learning, are at first goal-directed. 

Goal-directed action control is thought to rely mainly on 
the association between a response and its outcome (Bal-
leine & O’Doherty, 2010; Dickinson, 1985), so it can be 
flexibly modified or temporarily suspended (e.g., Valentin 
et al., 2007). This flexibility comes with the cost of sub-
stantial cognitive resources utilized for the consideration 
and planning of the actions. Following extensive training 
in similar conditions, actions are likely to become predomi-
nantly habitual, liberating valuable cognitive resources while 
allowing patterns of actions to be performed effortlessly 
(Balleine & O’Doherty, 2010; Dickinson, 1985; Graybiel, 
2008). Habitual actions are thought to rely mainly on the 
association between a cue and a response, where the cue 
elicits an automatic response (Adams, 1982; Dickinson 
et al., 1995). Therefore, behaviors under habitual action 
control are relatively fixed and cannot be easily adjusted 
when circumstances advantage a different pattern of action.

While primarily adaptive, the habitual system is also cru-
cially involved in the manifestation of maladaptive, unwanted 
behaviors, making their elimination particularly difficult. 
Specifically, an imbalance between the goal-directed and 
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habitual systems—and particularly, overreliance on habitual 
action control—has been implicated in a variety of prevalent 
psychopathologies, including addiction (Ersche et al., 2016; 
Hogarth et al., 2012; Hogarth & Chase, 2011; McKim et al., 
2016; Sjoerds et al., 2013), obsessive–compulsive disorder 
(Gillan et al., 2011, 2014; Gillan, Apergis-Schoute, et al., 
2015a; Snorrason et al., 2016), social anxiety (Alvares et al., 
2014, 2016), and obesity (Horstmann et al., 2015). Therefore, 
characterizing habit formation and manifestation, and under-
standing the interplay between goal-directed and habitual 
action control are of great clinical and societal importance.

The gold-standard criterion for distinguishing habitual 
from goal-directed action control has been the sensitivity of 
a learned behavior to changes in its outcome value (Adams, 
1982; Dickinson, 1985). Goal-directed behavior is sensitive 
to changes in outcome value, whereas habits are insensitive 
to such changes. This criterion was utilized in a landmark 
rodent study (Adams, 1982) that tested changes in response 
rates towards a food reinforcer following its devaluation 
(using conditioned taste aversion or, in later research, food 
satiety; Balleine & Dickinson, 1998). A particularly impor-
tant demonstration of this work has been the shift from goal-
directed to habitual action control as a function of training 
duration (Adams, 1982), which is arguably the major route 
through which habits are established. This result led to stud-
ies that yielded a substantial body of knowledge on habits 
in animals (Balleine, 2019; Balleine & O’Doherty, 2010).

Habit research in humans has utilized the outcome deval-
uation criterion to point to differences in habit expression in 
neuropsychiatric disorders (Alvares et al., 2016; Gillan et al., 
2014; Hogarth et al., 2012; Luijten et al., 2020) and search 
for relevant psychological factors and individual character-
istics that modulate habit expression (Gillan, Otto, et al., 
2015b; Pool et al., 2022; Schwabe & Wolf, 2009). It has also 
been used in attempts to dissociate the neural correlates of 
the goal-directed and habitual systems (e.g., de Wit et al., 
2012; Liljeholm et al., 2015; Reber et al., 2017; Valentin 
et al., 2007; Watson et al., 2018). However, perhaps the 
most basic demonstration of habit formation through pro-
longed training has yet to be reliably demonstrated. Only a 
single study has successfully demonstrated the shift in action 
control as a function of training duration (Tricomi et al., 
2009) but those results have not been replicated thus far 
and have been challenged in multiple replication attempts 
(de Wit et al., 2018; Gera et al., 2022; Pool et al., 2022). 
This impedes our ability to understand the mechanisms 
underlying habit formation and the development of potential 
interventions, and has left the research of habit formation in 
humans far behind its animal counterpart.

Here, we addressed the fundamental need for a habit 
induction task in humans (based on training duration). We 
rationalized that the discrepancy between animal and human 
research in the field of habit formation has been largely 

driven by laboratory limitations in human experimental set-
tings. First, habits are highly dependent on context (Bouton, 
2021; Thrailkill & Bouton, 2015), and laboratory settings in 
human experiments are different from common daily con-
texts. Second, most laboratory experiments in humans offer 
a relatively short duration of training, whereas real-life habits 
are established over a substantial period of time (Lally et al., 
2010), ranging from weeks to months. This long timeframe 
is feasible for animal research but not for human laboratory 
research. Relatedly, laboratory experiments in humans typi-
cally involve massed training, whereas habit formation favors 
distributed training (Adams, 1982). A recent study provided 
compelling evidence supporting the significant impact of 
training density on human reinforcement-based  learning 
(Wimmer et al., 2018). The study elucidated distinct cog-
nitive and neural mechanisms engaged in reinforcement-
based learning under massed versus spaced training and indi-
cated better sustainability of associations learned through the 
latter regimen. Finally, in instrumental training in laboratory 
settings, an unnatural situation is imposed on participants. 
In both free-operant and trial-based tasks, participants are 
“forced” to engage with a task for a substantial amount of 
time with a very narrow range of possible actions and, impor-
tantly, without the opportunity to stop engaging with the task 
in favor of another activity. This undermines the motivational 
aspects of their behavior (which play a dominant role in the 
process of habit formation) and is remote from how habits 
are typically acquired in real life.

To overcome these challenges, we developed a novel 
smartphone application (to be denoted as “app”), installed 
on participants’ own mobile devices. The app implements a 
gamified real-world free-operant task in which participants 
are allowed to freely and voluntarily determine their pat-
tern of engagement (while they go on with their everyday 
lives). In our task, participants were instructed that they could 
enter the app whenever and as much as they liked 24 hours 
a day, 7 days a week, in order to land their spaceship on a 
planet rich with gold and remove an ice layer (by pressing a 
short sequence on the screen) to search for gold (worth real 
money; Fig. 1). A typical entry lasted ~8–10 seconds, and 
participants found gold every three entries on average. We 
informed participants that the gold they found was stored in 
a warehouse that could be filled to capacity. Participants were 
assigned to three experimental groups that underwent either 
short (one group) or extensive training (two groups). On the 
third day (short training group) or tenth day (extensive train-
ing groups), the warehouse had become full, thereby prevent-
ing further gold accumulation. This served as the outcome 
devaluation manipulation. Notably, each entry to the app 
had a small cost, set to prevent intentional entries following 
outcome devaluation (Gillan, Otto, et al., 2015b). The ware-
house was emptied at the beginning of each day, thus allow-
ing repeated manipulations. To obtain a within-participant 
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Fig. 1   Illustration of the experimental procedure. During the 
experiment, participants were free to enter a gamified experimen-
tal app to find gold (converted into real money in case a dedicated 
warehouse is not full) on a distant planet (“the gold planet”). Partici-
pants were free to enter whenever and as much as they liked (24/7). 
(a) On a typical entry/trial, participants first viewed an animation of 
their spaceship landing on the gold planet and an indication of the 
cost each entry involved (one unit of gold). Then, to start looking 
for gold, they had to press the lower and upper half of the screen (in 
this fixed order), followed by a digging for gold animation that ended 
with the outcome presentation (either 15 units of gold or a worthless 
piece of rock). (b) On manipulation days (unbeknownst to partici-
pants), the day started regularly. From the third daily entry and until 
the next day, the outcome was hidden. On the fifth entry, the partici-
pants were presented with either a message stating that the warehouse 

had reached capacity, effectively meaning they could not accumulate 
any more of the gold they would possibly find for the rest of the day 
(outcome devaluation), or a message stating that the warehouse had 
become half full, meaning they could continue to accumulate gold 
(a control manipulation). After confirming this message, they found 
a cave rich with gold and had 5 seconds to collect gold (by press-
ing the gold piles). Each press in the cave cost 10 gold units, and 
each pile was worth 15 units, which could only be accumulated if the 
warehouse was not full. This part was used as a manipulation check 
for the outcome devaluation. Subsequent entries during the rest of 
the day were considered entries under manipulation and were used as 
the main dependent variable. (c) Participants were assigned to three 
experimental groups that varied in training duration and number of 
control manipulations. * An online demo of the task is accessible at 
https://​ranig​era.​github.​io/​RWFO_​app_​demo

https://ranigera.github.io/RWFO_app_demo
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baseline measurement, we deployed a control manipulation 
(where the warehouse became half full) a day before and a 
day after the outcome devaluation day. One of the two exten-
sive training groups performed an additional three control 
manipulations on the second, third, and fourth days (to occur 
chronologically in parallel days to the days of manipulations 
in the short training group). We sought to test whether and to 
what extent participants continued to enter the app following 
outcome devaluation compared with the preceding and fol-
lowing adjacent “outcome value retained” days (devaluation 
day ±1). We hypothesized that our procedure would lead to 
increased habit formation as a function of training duration, 
such that participants would demonstrate reduced sensitivity 
to outcome devaluation following extensive (long) training 
compared with short training. As an outcome devaluation 
manipulation check, we embedded a mini-task following 
each manipulation during which participants had 5 seconds to 
freely collect gold at a substantial cost. An online demo of the 
task is accessible at https://​ranig​era.​github.​io/​RWFO_​app_​
demo. We also examined whether habit expression was asso-
ciated with measures of engagement/motivation (extracted 
from the task data) and with the reliance on model-free (MF) 
and model-based (MB) reinforcement learning strategies—
as extracted from the commonly used two-step task (Daw 
et al., 2011) that participants performed following the main 
task—which are often referred to as proxies of habitual and 
goal-directed behavior, respectively.

Results

General engagement rates throughout the task

Engagement rates throughout the task varied quite consid-
erably between participants. Across all participants and 

all days of the task, excluding manipulation days, partici-
pants entered an average of 122.2 entries a day (SD = 180.7; 
median = 53.5, estimated 95% CI around the median [46.9, 
61.1]; Fig. 2 and Supplementary Fig. 1).

Habit formation as a function of training duration

To test the effect of training duration on habit formation, we 
ran our preregistered mixed-model Poisson regression with 
number of entries as the dependent variable, group (short 
training, extensive training, and extensive training with par-
allel manipulations) and manipulation (outcome devaluation, 
control pre-devaluation, control post-devaluation) and their 
interaction, as independent variables, and participant as a 
random effect (see formulation and a required slight devia-
tion from our preregistration in “Data analysis”). The results 
of the model showed a large over-dispersion (dispersion 
ratio = 11.683, Pearson’s χ2

389 = 4545, p < 0.001), indicating 
that this model is not suitable for our data. In search of an 
appropriate model, we ran a leave-one-out cross-validation 
(LOOCV) on three models proposed to adequately handle 
over-dispersed count data (Bolker, 2022): an observation-
level random effects model (OLRE), a negative binomial 
mixed-model regression with a linear (“quasi-Poisson”) 
parameterization (NB1), and a similar model with a quad-
ric parameterization of the variance (NB2). All models were 
formulated identically as the aforementioned mixed-model 
Poisson regression, with the exception of the observation-
level random effect added in the OLRE model. The NB1 
model yielded the lowest mean squared error (MSE) and 
thus was chosen to model our data (for the results of the 
unchosen models see Supplementary Tables 1 and 2).

We found that participants were more likely to respond 
habitually following extensive training than after short 
training (Fig.  3), as indicated by a significant group × 

Fig. 2   Raw daily entry data. Average (on the left panel) and median 
(on the right panel) numbers of entries to the app on each experimen-
tal day. Error bars on the left panel represent ±1 standard error of the 

mean (SEM) and on the right panel represent estimated 95% CI 
around the median (calculated as Median ±

1.57 x IQR
√

N
 , similar to box-

plot notches). Semitransparent lines represent individual participants

https://ranigera.github.io/RWFO_app_demo
https://ranigera.github.io/RWFO_app_demo
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Fig. 3   Participants’ entries on the main manipulation days. (a) On 
the upper part: a raster plot depicting participants’ entries (each ver-
tical line represents an entry) throughout the three consecutive main 
manipulation days. Groups are separated by the dashed blue lines. On 
the lower part: the (relative) density of these entries across each group. 
(b) Relative proportion of valued (on the day before devaluation) vs. 

devalued entries (  still valued

still valued+devalued
 ). The horizontal lines represent the 

median. Statistical significance indicated here was extracted from the 
relevant simple interaction effects of our main analysis, that is, the 
negative-binomial mixed-model (with a “quasi-Poisson” parameteriza-
tion). * “Extensive parallel” refers to the extensive training group with 
additional parallel control manipulations (in the first week)
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manipulation interaction (χ2
4 = 12.85, p = 0.012) and signifi-

cant simple interaction effects (Table 1). Simple interactions 
between pre-devaluation versus devaluation manipulation 
levels and the different groups indicated significantly less 
sensitivity to outcome devaluation (a hallmark of habitual 
behavior) in both the extensive training (p = 0.007) and the 
extensive training with parallel manipulations (p = 0.002) 
groups relative to the short training group (but not between 
the two extensive training groups; p = 0.529). This suggests 
that this procedure is able to capture the effects of training 
duration on habit formation/expression. We also found a 
simple group effect indicating that participants in the exten-
sive training with parallel manipulations group entered less 
on the pre-devaluation day than participants in the short 
training group at p < 0.001. This a priori difference may have 
limited the extent to which these participants could mani-
fest goal-directed behavior on one hand, but on the other 
hand made it conceptually easier for them to reduce their 
“habitual” entries (following devaluation), as less behavioral 
adaptation was required of them.

We also explored whether the proportion of participants 
with no entries following outcome devaluation (concep-
tualized as zero habitual responses) was larger following 
short versus extensive training. We found no significant 
effect between the short and either of the extensive training 
groups (χ2s2 < 2.20, ps > 0.138). Surprisingly, results were 
descriptively in the opposite direction. We presume this may 
have resulted from the requirement for a minimum of five 
daily entries we imposed on participants (see “Experimental 
procedure”). Participants’ confidence in and motivation to 

fulfill this requirement may have been different following a 
short training compared to extensive training, such that par-
ticipants in the short training groups were willing to “pay” 
to make sure they stayed in the game.

Manipulation checks

To verify the effectiveness of the outcome devaluation 
manipulation, we conducted two tests. First, we compared 
the amount of gold piles collected in the cave mini-task 
across all participants (Fig. 1b) following devaluation versus 
control manipulations (averaged across the days before and 
after outcome devaluation). As predicted, participants tended 
to collect significantly less gold following outcome devalu-
ation (t132 = 5.66, p < 0.001; Fig. 4). A follow-up mixed-
model analysis of variance (ANOVA) that included group, 
manipulation type, and their interactions as predictors con-
firmed that this change was similar across groups, as mani-
fested in no group effect (F2,130 = 1.86, p = 0.16, ω2 = 0.01) 
or group × manipulation type interaction (F2,130 = 1.36, 
p = 0.261, ω2 = 0.002). This indicates that the duration (and 
type) of training did not lead to any discernible differences 
in participants' comprehension of the value manipulations. 
As expected, we found a significant manipulation type effect 
(F1,130 = 32.17, p < 0.001, ω2 = 0.08). For an additional test 
that verifies that the decrease in entries following devalua-
tion can be attributed to sensitivity to outcome devaluation 
rather than a natural decline in engagement over time as the 
experiment progressed, please refer to the supplementary 
materials and Supplementary Fig. 2.

Table 1   Note: This data is mandatory. Please provide

Mixed-model negative binomial regression analysis (with a “quasi-Poisson” parameterization of the variance) of participant entries following 
manipulations as explained by manipulation type, group, and their interactions. Control pre-devaluation manipulation and the short training 
group were used as reference levels
The p-values are the significance level

Entries

Predictors Log-Mean std. Error p

(Intercept) 3.76 0.15 <0.001 ***
Manipulation [Devaluation] -2.14 0.18 <0.001 ***
Manipulation [Control - post] -0.23 0.12 0.045 *
Group [Extensive Training] -0.35 0.21 0.105
Group [Extensive Training - Parallel week1 manipulations] -0.83 0.23 <0.001 ***
Manipulation [Devaluation] * Group [Extensive Training] 0.67 0.25 0.007 **
Manipulation [Control - post] * Group [Extensive Training] 0.05 0.18 0.778
Manipulation [Devaluation] * Group [Extensive Training - Parallel week1 

manipulations]
0.85 0.27 0.002 **

Manipulation [Control - post] * Group [Extensive Training - Parallel week1 
manipulations]

0.04 0.20 0.826
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Establishing an individual behavioral adaptation 
index

In order to test further hypotheses regarding factors involved 
in habit formation/expression, we formulated and prereg-
istered an individual behavioral adaptation index (can also 
be referred to as a goal-directed behavior index; see “Data 
analysis” for more details about its calculation). This index 
ranges from −1 to 1, where 1 represents utter goal-direct-
edness (no habitual entries), and values around 0 indicate 
habitual responding. We compared this index between the 
two extensive training groups, and since there was no sig-
nificant difference (t86 = 1.50, p = 0.138 mean extensive 
training group = 0.51, mean extensive training with parallel 
manipulations group = 0.39), we collapsed their data for all 
subsequent analyses. We then tested whether the expected 
difference between the short and (combined) extensive 
training group is significant to evaluate the validity of our 
measure. This yielded no effect (t131 = 0.16, p = 0.872; mean 
short training group = 0.47, mean combined extensive train-
ing group = 0.45), suggesting this index might not be optimal 
to capture the full structure of the data. To further examine 
this index, we tested whether one or two latent subgroups 
would better explain its distribution within each group. To 
this end, we ran an exploratory finite mixture modelling anal-
ysis (Leisch, 2004). Based on the smaller Bayesian informa-
tion criterion (BIC), we found that one cluster (of generally 
goal-directed participants) most likely produced the data in 
the short training group, whereas the data in the (combined) 

extensive training group was most likely formed by two latent 
clusters, consistent with the interpretation of one habitual 
and one goal-directed subgroup generating the data (Fig. 5).

Unique smartphone app insights: Engagement 
patterns and habit formation

We conducted a series of analyses to examine the relation-
ships between different aspects of engagement rates and pat-
terns (represented by different indices) and habit expression. 
First, to test the relationship between baseline engagement 
rates and habit expression, we extracted the lower and upper 
quartiles of the data according to the number of entries com-
mitted by the participants on the pre-devaluation day (fol-
lowing the control manipulation). We then ran a rank-based 
regression on the behavioral adaptation index with group 
(short vs. [combined] extensive training), quartile (lower vs. 
upper), and their interaction as independent variables. We 
did not find a differential effect of baseline engagement rates 
on habit expression following short versus extensive training 
(specifically, we hypothesized that low baseline rates will 
promote more goal-directed behavior after short training vs. 
extensive training, and vice versa for high baseline rates), 
as indicated by the lack of an interaction effect (F1,65 = 2.26, 
p = 0.138). Instead, we found that baseline engagement rates 
modulated habit expression in both groups, such that high 
baseline engagement rates were associated with reduced 
habit expression (F = 13.40, p < 0.001, for the quartile main 
effect; quartile B = 0.45, p = 0.001; Fig. 6a).

Fig. 4   Manipulation check of the outcome devaluation procedure. 
Mean gold piles collected during a 5-second period of free gold col-
lection following outcome devaluation and control (value unchanged) 

manipulations. Each press (i.e., touching the screen) cost 10 units of 
gold and each pile was worth 15 units. Error bars represent ±1 std 
error of the mean (SEM)
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The nature of our real-world free-operant task allows 
participants to not only determine their engagement rates 
but also their engagement patterns with the app. Partici-
pants tended to form self-initiated micro-sessions during 
which they committed multiple entries. We exploited this 
fact to estimate two measures we deem to represent the 
levels of spaced and massed training engaged by partici-
pants. To this end, we calculated the time interval between 
consecutive entries (inter-entry interval). Consecutive 
entries that occurred within an interval of less than 300 
seconds were considered part of the same self-initiated 
session. We then calculated for each participant their 
average number of daily sessions and average number of 
entries per session. We entered these two measures along 
with group (short vs. [combined] extensive training) and 
all possible interactions as independent variables to a 
rank-based regression model on the behavioral adaptation 

index. We did not find an indication of differential effects 
on habit expression following short versus extensive train-
ing duration exerted by the self-initiated session indices 
(no three-way interaction and no relevant two-way interac-
tions, Fs1,125 < 1.80, ps > 0.182). Nevertheless, we found 
a main effect of the average number of entries per session 
(F1,125 = 5.19, p = 0.024), a trend of the average number of 
daily sessions (F1,125 = 3.87, p = 0.051), and importantly, 
an interaction between these two measures (F1,125 = 11.19, 
p = 0.001). The direction of these effects indicated that 
an increase in either of these indices, along with an addi-
tional mutual amplification, were associated with reduced 
habitual responding (i.e., with greater adaptation to out-
come devaluation; averaged entries per session β = 0.18, 
p = 0.017; averaged daily sessions β = 0.16, p = 0.041; and 
their interaction β = 0.38, p < 0.001; Fig. 6b). This finding 
suggests that an increase in voluntary massed and spaced 
training, which probably reflects general engagement rates/
motivation, synergistically contributes to one’s ability to 
deploy goal-directed behavior when such is preferred.

We also tested whether the number of entries performed 
on the first day of the task and the average of daily entries 
across the entire task (excluding the outcome devaluation day) 
predict habit formation. In our preregistration we planned a 
correlational (individual differences) analysis only across 
participants in the (combined) extensive training group. Cor-
relating neither of these measures with the behavioral adap-
tation index resulted in significant effects (first day entries: 
Spearman r86 = 0.07, p = 0.247; average daily entries: Spear-
man r86 = 0.12, p = 0.126). We then conducted an exploratory 
analysis using the data from both groups. For each of these 
entry factors we ran a rank-based regression on the behavioral 
adaptation index in which we used the entries factor (either the 
first day entries or average daily entries), the group, and their 
interaction as independent variables. Running this analysis 
using the first day entries yielded a significant main effect of 
first day entries (F1,129 = 7.24, p = 0.008), but no group effect 
(F1,129 = 0.58, p = 0.446) and no interaction between group and 
first day entries (F1,129 = 2.93, p = 0.089). A similar analysis 
on the average daily entries showed a significant main effect 
of this measure (F1,129 = 14.33, p < 0.001) but no group or 
interaction effects (Fs1,129 < 0.14, ps > 0.71). Performing more 
entries on the first day (β = 0.19, p = 0.007) and more averaged 
daily entries across all days (β = 0.30, p < 0.001) were asso-
ciated with greater behavioral adaptation (i.e., goal-directed 
behavior; Fig. 6c).

Model‑free and model‑based reinforcement 
learning strategies and habit formation

MF and MB reinforcement learning strategies are com-
monly referred to in the literature as proxies of goal-directed 
and habitual action control, respectively. In an exploratory 

Fig. 5   Cluster analysis of the behavioral adaptation index. Dis-
tribution of the identified clusters (latent subgroups) of the behavio-
ral adaptation index. For each group (extensive training groups were 
combined), we fitted k = 1 or 2 clusters using a finite mixture-mod-
eling analysis and chose the number of latent clusters that was most 
likely to generate the data (based on lowest BIC)



Behavior Research Methods	

1 3

Fig. 6   Effects of engagement measures on habit expression. The 
individual behavioral adaptation index, used as the dependent meas-
ure, can range between –1 and 1, where values around 0 represent 
habitual responding, and higher values represent goal-directed behav-
ior. (a) Effects of high vs. low baseline rates (upper vs. lower quar-
tile) as measured on the pre-devaluation day (following the control 
manipulation). (b) Effects of self-engaged spaced and massed training 
measures (based on inferred participants’ self-initiated session). The 

contours are portrayed according to the predicted values from a rank-
based regression. Values were set to 1 if their prediction was larger. 
For visualization purposes, we set an upper bound of three standard 
deviations from the mean for both measures (resulting in four partici-
pants’ points not presented). (c) Effects of the number of entries on 
the first day and (left) and of the average daily entries (right). The 
regression lines are portrayed according to the predicted values from 
a rank-based regression (used for an exploratory analysis)
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analysis, inspired by the work of Gillan et al. (Gillan, Otto, 
et al., 2015b), we examined how these indices, as extracted 
from the two-step task (Daw et al., 2011) (conducted by 
our participants following the completion of the mobile 
app part), were related to the behavioral adaptation index 
(and thereby to goal-directed and habitual action control) as 
measured in our task. We first fitted to the two-step task data 
a full reinforcement learning computational model designed 
to estimate the level of MB and MF strategies employed 
by each participant (see “Methods” and supplementary 
materials for details on the computational model). Subse-
quently, we used the MF and MB parameters (separately), 
along with group and their interaction, as predictors of the 
behavioral adaptation index in a rank-based regression. We 
hypothesized that MF action control is differentially associ-
ated with habit expression as a function of training duration, 
such that following a short training, MF learning is asso-
ciated more with habits than following extensive training. 
In contrast, we found a main effect of MF action control 
(F1,119 = 8.66, p = 0.004) but no interaction or main effect 
of group (Fs1,119 < 1.20, ps > 0.27). Interestingly, contrary 
to its traditional attributed correspondence with habitual 
behavior, we found that MF action control was positively 
associated with increased goal-directed behavior (β = 0.35, 
p = 0.001; Fig. 7). As opposed to MF, MB action control 

was not associated with sensitivity to outcome devaluation 
in our task (Fs1,119 < 2.29, ps > 0.133 for the relevant main 
effect and interaction). Finally, the computational model 
also includes learning rate and perseverance parameters. 
We tested whether these parameters interacted with train-
ing duration and habit formation using a similar rank-based 
regression model. We found no such evidence for either of 
these parameters (Fs1,119 < 1.37, ps > 0.244 for all relevant 
effects).

Discussion

In this work, we established a novel paradigm for experi-
mental habit induction in humans. This paradigm, imple-
mented as a gamified mobile app, uses a new setting we 
named “real-world free-operant” that targets instrumental 
learning -related processes in a more ecological manner. We 
found that this procedure successfully demonstrated habit 
formation as a function of training duration, a long-standing 
challenge in the field of human action control, using the 
canonical index of reduced sensitivity to outcome devalua-
tion. In addition, we found that individual engagement pat-
terns played a substantial role in habit expression. Specifi-
cally, we found that more engaged individuals, despite being 

Fig. 7   Relationship between MF learning and habit expression. 
Participants’ individual levels of MF learning (as extracted from the 
two-step task using a reinforcement learning computational model; 
Daw et al., 2011; Sharp et al., 2016) are illustrated along with their 
individual behavioral adaptation index as calculated from the app 
main task. The individual behavioral adaptation index ranges between 

–1 and 1, where values around 0 represent habitual responding, and 
higher values represent goal-directed behavior. The regression lines 
are portrayed according to the predicted values from a rank-based 
regression (used for an exploratory analysis). We consider this analy-
sis of the relationship between these measures exploratory
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exposed to more training and more rewards, were more 
likely to remain goal-directed following outcome devalu-
ation. Finally, in contrast to the common view in the field, 
we found in an exploratory analysis that MF learning was 
associated with goal-directed rather than habitual behavior, 
whereas MB learning was associated with neither.

Experimental habit induction in humans has constituted 
a significant hurdle for researchers in the field. Promising 
results of habit formation following extensive training were 
demonstrated in one study (Tricomi et al., 2009) (indexed 
by insensitivity to outcome devaluation), but a series of 
attempts were not successful in replicating those findings (de 
Wit et al., 2018; Gera et al., 2022; Pool et al., 2022). Other 
attempts targeting decreased sensitivity to outcome devalu-
ation as a function of training duration were also unsuccess-
ful (de Wit et al., 2018). This led researchers to pivot from 
the canonical outcome devaluation criterion and focus on 
alternative proxies of habitual behavior. Special emphasis 
was put on response time and related error rate effects. One 
study proposed that response time switch cost following 
devaluation (in choice trial settings) may indicate habitual 
behavior (Luque et al., 2020). Another study focused on 
error rates towards remapped associations as a function of 
training duration and given response time (Hardwick et al., 
2019). These were important demonstrations of overtrain-
ing-induced effects, which may well approximate latent habit 
formation and capture key aspects of habitual action control 
(although see evidence for a different account of action slips 
under time pressure; Buabang et al., 2022). Still, establishing 
experimental habit induction using the canonical insensitiv-
ity to outcome devaluation criterion in free-operant settings 
is arguably more direct, more equivalent to the large body of 
animal research in the field, and more representative of how 
habits are formed and manifested in real life.

In the task we presented here, we introduced several fea-
tures that may have contributed to the successful demon-
stration of habit formation as a function of training dura-
tion: (1) Addressing habit-related contextual (Bouton, 2021; 
Thrailkill & Bouton, 2015) and temporal aspects (Adams, 
1982; Lally et al., 2010) is likely to have contributed to our 
observed effect. In addition to performing the experiment 
in their natural environment, participants used their own 
smartphones and were able to use the app whenever and 
to whatever extent they chose to for a relatively substantial 
period of spaced training, thus providing a similar experi-
ence to using everyday apps. (2) An important feature of 
our design was that, similar to successful demonstrations 
of habit formation in animals, and unlike previous attempts 
in humans, we used only one stimulus–response–outcome 
associative structure. The importance of this translational 
aspect is emphasized by findings showing that training ani-
mals on more than one instrumental associative structure 
has not led to habit formation (Colwill & Rescorla, 1985, 

1986; Kosaki & Dickinson, 2010). It is possible that the 
presence of two similar associative structures in a similar 
general context encourages goal-directed control in the pres-
ence of choices between actions (discussed in Lingawi et al., 
2015) or short trials (de Wit et al., 2018) and enhances habit 
expression in free-operant settings due to generalization of 
training on similar associative structures (de Wit et al., 2018; 
Gera et al., 2022; Pool et al., 2022). If this is indeed the case, 
avoiding the use of more than one associative structure may 
be key to successful experimental habit induction. (3) We 
trained participants on an action sequence rather than on a 
single action. Real-life instrumental behavior is rarely com-
posed of a single action. If habits have evolved to automate 
adaptive behaviors and liberate cognitive resources, their 
formation is more beneficial, and thus perhaps more likely, 
when a sequence of actions is to be learned. Accordingly, 
it has been shown that action sequences may contribute to 
habit formation (Dezfouli et al., 2014). Some neuroscientific 
evidence also highlights the important role action sequences 
may play in habit formation. It has been shown that actions 
are chunked together at the neuronal level (in the striatum) as 
training progresses and habits are putatively formed (Gray-
biel, 1998). Additionally, the sensorimotor striatum, a region 
previously implicated in habit expression (de Wit et al., 
2012; McNamee et al., 2015; Soares et al., 2012; Tricomi 
et al., 2009), increases its activity in tasks involving action 
sequences (e.g., Lehéricy et al., 2005; Poldrack et al., 2005), 
whereas in tasks involving a single action (in rodents), the 
number of neurons activated in this region was reduced over 
training (e.g., Barnes et al., 2005; Tang et al., 2007). While it 
is not feasible to quantify the unique or synergistic contribu-
tions of each of these task features in the present work, they 
could be targeted in future investigations using the task that 
we introduced here.

The unique session-free structure of our procedure, along 
with its 24/7 availability for a substantial period of time, 
allowed us to measure participants’ engagement (as a proxy 
of their motivation) in a unique manner, presumably more 
reliable and elaborate than is possible in typical laboratory 
or online session-based experiments. Even in traditional 
free-operant settings, participants are only “pseudo-free” to 
act in a manner that is aligned with their genuine motivation. 
They are “confined” to the experimental context and have 
only a very narrow range of potential actions they can per-
form during predefined limited timeframes. Our procedure 
was free of these limitations and thus captured participants’ 
engagement dynamics in a more comprehensive and com-
plete manner. Here, examining the relationships between 
different engagement aspects and habit expression revealed 
novel and perhaps counterintuitive findings. Engagement 
patterns were shown to play a substantial role in habit for-
mation/expression, such that more engagement was asso-
ciated with greater goal-directedness. Higher engagement 
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rates indicate a greater amount of (voluntary) training and 
more accumulated reward (with ratio reinforcement sched-
ule), which, in contrast to our findings, may be more aligned 
with enhancing habit formation (e.g., Adams, 1982; Dick-
inson et al., 1995). We suggest that engagement patterns as 
manifested in our task capture an additional layer of motiva-
tional aspects that, when they are high, push in the opposite 
direction, perhaps by increasing the ability to resist habitual 
action control or by utilizing goal-directed action control 
when a response is no longer desired. Taken together, we 
suggest that engagement dynamics may encapsulate oppo-
nent processes that push action control in opposite direc-
tions. Verifying and characterizing these dynamics can be a 
target for future inquiry.

Another interesting finding was observed in our explora-
tory analysis of the relationships between MB and MF 
strategies and habit expression. MB and MF reinforcement 
learning strategies, typically measured with the two-step 
task (Daw et al., 2011), have been commonly regarded as 
proxies of goal-directed and habitual action control, respec-
tively. Recent studies tested this equivalency by examining 
the relationships between MB and MF learning and habit 
expression as indexed by sensitivity to outcome devalua-
tion. These studies found evidence for equivalence, at least 
to some extent, between the MB and goal-directed systems, 
but not between the MF system and either the goal-directed 
or habit system (Gillan, Otto, et al., 2015b; Sjoerds et al., 
2016). We found that MF learning was associated with goal-
directed behavior and MB learning was not associated with 
either system. This result is not aligned with either these 
recent investigations or the traditional view of MB and MF 
learning. It is difficult to determine what led to the differ-
ence in results between the aforementioned studies and the 
present work, since these previous procedures were different 
in multiple ways from our procedure. A possible explana-
tion for the discrepancy between our findings and previous 
results is that in our procedure, high engagement rates (and 
hence, motivation) promoted both sensitivity to outcome 
devaluation and MF behavior. If this was indeed the case, it 
could imply that increased motivation primarily promotes 
the more simplistic MF strategy even if it does not maximize 
reward (although as we qualitatively observed, it may also 
increase MB learning).

Limitations and potential improvements

A few limitations and potential improvements should be 
noted. One trade-off inherent to the real-world free-operant 
procedure is the uncontrollable and untraceable exposure to 
the stimulus (the app icon). A solution to tracking stimulus 
exposure may be feasible using tools that allow smartphone 
camera-based eye tracking (Valliappan et al., 2020). How-
ever, controlling for stimulus exposure while maintaining 

the real-world free-operant structure would be challenging. 
We presume that stimulus exposure, among other factors 
related to behavioral, psychological, and contextual indi-
vidual differences which might be strongly manifested in 
such a procedure, may add a substantial amount of generally 
unwanted variance. This joins our general proposition that 
the expression of habits, especially when they are no longer 
adaptive, is a subtle effect, and its stability is subject to a 
variety of factors. The observation that a subset of partici-
pants in the extensive training groups manifested sensitiv-
ity to outcome devaluation (which is in line with previous 
evidence; de Wit et al., 2018; Gera et al., 2022; Pool et al., 
2022) supports this notion and perhaps indicates that habit 
formation is not a unitary deterministic process. We there-
fore propose that acquiring large datasets is of great value 
in further establishing the effects found here and exploring 
other factors implicated in habit learning.

A future improvement that may increase the utility of our 
app is establishing a better behavioral adaptation index that 
more comprehensively captures individual levels of goal-
directed/habitual responding. The measure suggested (and 
preregistered) as an adaptation index seems to capture this 
only to some extent, and a better index may help gain more 
accurate findings about how factors of interest interact with 
action control.

Another target for future improvement is strengthen-
ing the robustness of the main manipulation check, that is, 
the cave mini-task employed following value manipula-
tions. While participants reduced the amount of gold they 
collected following outcome devaluation compared to the 
control manipulations (Fig 4), attaining a stronger adapta-
tion (greater reduction) is preferable. We learned from post-
experiment debriefing that the lower-than-desired effect is 
at least in part because (1) some participants believed that 
this part was unrelated to the warehouse capacity (although 
explicitly instructed that it was), and (2) a few individu-
als opted to engage in the mini-task (collecting gold) due 
to its enjoyable and challenging nature, willing to endure 
the associated costs. Thus, to enhance the effectiveness of 
the manipulation check, it could be beneficial to place addi-
tional emphasis on the relationship between the gold in the 
cave and the condition of the warehouse, and to increase the 
negative consequences associated with that gold collection 
following outcome devaluation. Another approach would be 
to replace this mini-task with a simple question that veri-
fies participants’ understanding of the task (see more details 
below in “New features and customizability: Expanding the 
app for future utilization”).

Finally, our procedure is limited in the extent to which 
it can be used to study the neural underpinnings of habit 
formation and expression. Since it is not applicable for real-
time laboratory-restricted research tools like task-based 
functional magnetic resonance imaging (task-fMRI), it is 
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not well-suited to capture the neural dynamics occurring 
while participants performing the task and action control 
presumably shifts from the goal-directed to the habit system. 
Nevertheless, in combination with tools like resting-state 
fMRI and diffusion tensor imaging (DTI), we suggest that 
our procedure has the potential to enhance our understand-
ing of the neural mechanisms involved in habits. This could 
be achieved by tracking functional and microstructural neu-
ral plasticity induced by our task, as well as through the 
examination of functional and structural neural correlates 
of individual habit propensity.

New features and customizability: Expanding 
the app for future utilization

A primary objective of this study was to introduce a novel 
methodological framework we named the real-world free-
operant task, alongside a tool designed to facilitate the 
implementation of experiments utilizing this framework. 
To make it accessible and relevant to a wide range of the 
researchers in the multiple branches of behavioral, psy-
chological, and neural sciences, we constructed a highly 
modular version of the app, allowing researchers to easily 
integrate a variety of features and tune a wide range of 
parameters. Furthermore, to ease the process of modify-
ing the app, we created an online tool that enables one to 
conveniently set the task features and parameters (https://​
ranig​era.​github.​io/​RWFO_​app_​setup). Below we describe 
a non-exhaustive list of the modifiable features and tunable 
parameters we implemented, and, where relevant, we men-
tion the motivation to include them and/or their potential 
pros and cons compared to the ones used in this study:

	 (i)	 It is possible to adjust the number and timing of cloud 
appearances (outcome masking) and warehouse 
manipulations (outcome devaluation and control). 
This allows one to introduce these features in a more 
regular and/or flexible manner to participants. Doing 
so can help reduce the saliency of outcome devalu-
ation and thereby mitigate potential enhancement 
of goal-directed behavior. This flexibility will be 
particularly beneficial for studies employing similar 
training durations for all participants, where more 
frequent and flexible exposure to these task features 
would not lead to an unbalanced design between dif-
ferent experimental groups.

	 (ii)	 The manipulation check we used (the mini-task of 
gold collection in a cave) has several advantages. It 
is relatively fun and challenging and could increase 
general engagement. In addition, it generates a 
behavioral parametric measure which could be use-
ful for certain use cases. Nevertheless, for researchers 

that might opt for a more simplistic and explicit test, 
we added an alternative configuration by which, fol-
lowing value manipulations, participants are simply 
prompted to type the current status of the warehouse.

	 (iii)	 In retrospect, the warehouse capacity was framed 
suboptimally. The warehouse is supposedly com-
pletely emptied at the beginning of each day, but then 
on some days it becomes half full after five entries 
but never gets completely full no matter how many 
more entries have been committed afterwards. On 
another day, it becomes completely full after five 
entries. Crucially, it appears that participants' per-
formance in our study remained unaffected. This is 
probably due to a slightly different wording used in 
the instructions and comprehension test with respect 
to the warehouse status. In these parts, participants 
were instructed that sometimes they would receive 
a report that the warehouse had become “partially” 
(rather than “half”) full and that as long as it was not 
completely full, they could continue to accumulate 
gold. This seems to have helped us to successfully 
convey the intended meaning of devalued versus still-
valued (control) phases. Nonetheless, in the new app 
version, to increase the framing quality and prevent 
potential confusion, we changed the instructions 
and the daily message on emptying the warehouse 
to convey the message that the cargo spaceship is 
sometimes able to empty just some of the gold in the 
warehouse and not all of it. This should make the 
warehouse status messages (or not getting messages) 
more believable and consistent.

	 (iv)	 Explicitly reminding participants of the value sta-
tus of the outcome or the counterproductivity of the 
(habitual) responses committed following outcome 
devaluation could prompt the goal-directed system 
to gain control and thereby reduce sensitivity to cap-
ture habit formation. Nevertheless, indicating that a 
potential outcome is no longer valuable following 
responses towards that outcome is a worthwhile 
feature that might be preferable in some cases and 
that could increase the confidence in interpreting 
post-devaluation actions as habitual. We thus added 
an option to include a message shown following 
post-devaluation sequence completions that says, 
“A reminder: the warehouse is full and cannot store 
more gold today.”

	 (v)	 The fixed reward pattern on the first two daily entries 
(first non-rewarded, second rewarded) may not be 
necessary. We thus added the option to remove any 
such pattern or to replace it with a more flexible pat-
tern of two random rewarding entries out of the first 
five entries.

https://ranigera.github.io/RWFO_app_setup/
https://ranigera.github.io/RWFO_app_setup/
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	 (vi)	 To enable researchers to use a wide range of rein-
forcement patterns and investigate their effects on 
behavior and learning, we have incorporated two fun-
damental functionalities. These include the option to 
set a random interval reinforcement schedule and the 
ability to incorporate aversive outcomes (i.e., losing 
gold).

	(vii)	 Using multiple learning contexts with our frame-
work could be a desired feature for numerous use 
cases. Since the app is implemented as a progressive 
web application (PWA), it allows for easy installa-
tion of multiple instances on the same device. Each 
instance can have slight variations in background/
stimuli images and/or task parameters, allowing for 
the creation of distinct learning environments or con-
texts.

Conclusions

In conclusion, we introduced here a novel ecological pro-
cedure, implemented as a gamified smartphone app, for 
experimental habit induction. This app is a hybrid between 
field and laboratory experimental settings, seeking to draw 
the best from both worlds. Our unique paradigm introduced 
a new real-world free-operant framework by which par-
ticipants can freely engage whenever and as much as they 
liked. Using this paradigm, we successfully demonstrated 
the sought-after effect of habit formation as a function of 
training duration. The real-world free-operant structure of 
the app also allowed us to track engagement dynamics from 
several different angles and demonstrate its positive rela-
tionship with maintained sensitivity to outcome devaluation. 
Finally, in an exploratory analysis we found contradictory 
effects to the common view conceptually paralleling MB 
learning to goal-directed behavior and MF learning to habits. 
Our app can be used in the future, ideally by collecting large 
datasets, to enrich our understanding of the psychological 
and neurobehavioral mechanisms underlying habit formation 
in humans “in the wild.” Furthermore, it is well suited for 
studying a plethora of other instrumental behavior -related 
questions in a naturalistic manner.

Materials and methods

Participants

We collected data from 145 participants, randomly assigned 
to three experimental groups. Ten were excluded due to not 
fulfilling a requirement of at least five daily entries across 
all the days of the experiment. One was excluded due to a 
technical error (one of the manipulations along with its sub-
sequent manipulation check appeared twice in a row on two 

consecutive entries). One participant was excluded due to a 
pattern of what appeared to be nonhuman, automated entries 
(see details in the supplementary materials). Thus, our final 
sample of valid participants included 133 participants (91 
female) aged 18–38 (mean = 25.3, SD = 3.59), 45 in a short 
training group, 45 in an extensive training group, and 43 in 
an extensive training with parallel manipulations group (see 
“Procedure” for details about the groups).

Note that the 10 participants who did not reach the mini-
mal daily entry requirement belonged to the extensive train-
ing groups (four and six in the extensive and extensive with 
parallel manipulations groups, respectively). This raises the 
question whether a survivor bias may have influenced our 
results. Two of these 10 participants did not commit their 
minimal entry requirement in the first few days and therefore 
would have been excluded regardless of their group assign-
ment. This leaves eight out of 100 participants who began 
their participation in these groups (8%) who may have theo-
retically contributed to a survivor bias. This is a relatively 
low rate, especially for such a longitudinal real-world study, 
and we presume it had little, if any, effect on our results.

We administered the study in two batches, a small one 
(yielded 34 valid participants out of 40) followed by a large 
one (yielded 99 valid participants out of 105). Our sample 
size is larger than our planned (and preregistered) target 
sample size of 90 valid participants (30 per group). This 
stems from the fact that we ran the study in batches, and 
based on previous pilots, we overestimated the number of 
participants that would not start their participation and in 
particular the number of excluded participants (which was 
considerably less than we had anticipated). Note that this 
target sample size was rationalized as a compromise between 
our desire to acquire as large a dataset as possible, to be able 
to detect even subtle effects in a relatively noisy environ-
ment, and the resources available for this well-paid study.

As part of the recruitment process, we prescreened par-
ticipants to ensure they have constant access to their smart-
phone (including on weekends) and to the internet and that 
they are not planning to travel abroad or replace their smart-
phone within a period of one month from the day scheduled 
for the beginning of their participation.

For the two-step task, performed following the main part 
of the experiment (see Post-experimental procedures), out 
of the 133 valid participants, we were able to collect data 
from 127 participants. The data for six participants were 
not collected due to technical problems (either they could 
not open the task on their personal computer or they per-
formed the task but the data were not successfully saved to 
our server). Another four participants were excluded from 
analyses involving data from the two-step task for failing to 
meet one or more predetermined behavioral exclusion crite-
ria used to verify participants’ engagement in this task (see 
“Data analysis”).
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Experimental procedure

About the app

We devised and developed a progressive web application 
(PWA), named “Space gold”, compatible with both Apple 
iOS and Android-based smartphone devices, to be used as 
an experimental platform to ecologically induce and study 
habit formation and expression. We programmed the app in 
vanilla JavaScript, and for the instructions part we also used 
jsPsych (de Leeuw, 2015). We put an emphasis on gamify-
ing the app to enhance the real-world naturalistic app-using 
experience and correspondingly attenuate the experience of 
participating in a scientific behavioral experiment. The app 
was designed to work both online and offline to maximize its 
availability to participants. Finally, to prevent parallel instal-
lation of the app on multiple devices, we implemented a 
mechanism that allowed a one-time-only installation through 
a designated link.

Installation and instructions stage

Participation in the experiment started on Sundays (the first 
day of the work week in Israel). This was done in order to 
retain uniformity across participants and avoid additional 
between-participant variance or confounding effects exerted 
by the different days of the week. Importantly, starting on 
Sundays ensured that none of the manipulation days (as we 
scheduled for the different experimental groups; Fig. 1c) 
would fall on the weekend, which we rationalized to gener-
ally constitute a substantially different temporal and most 
likely physical context.

Participants received an email with a personal installa-
tion link at 8:00 am on their scheduled starting date and 
were required to complete the installation and instructions 
part no later than 11:00 am. In practice, we allowed an extra 
hour (until 12:00 pm) to participants who were not able to 
complete it in time. The participants were required to install 
the app and place it in a specified position (on the second 
row from the bottom, as the second app from the right or on 
the center, in a four- or five- app–column interface, respec-
tively; see example in Fig. 1a) on their main home screen 
(defined as the one they use the most). To ensure it was 
positioned as instructed, we asked the participants to send 
us a screenshot of their home screen following the installa-
tion. The participants were then required to enter the app 
and go over the instructions of the task (framed as a game), 
followed by an active demo, and then by a comprehensive 
comprehension test. The test was composed of 11 multiple-
choice questions. Failing to correctly answer one or more 
questions required participants to repeat the test (after given 
the opportunity to go over the instructions and demo again). 
This cycle repeated itself until all questions were answered 

correctly. At 12:30 pm, after all the participants had com-
pleted the instructions part and became “active players,” we 
emailed them a copy of the instructions.

Real‑world free‑operant task

The general narrative of the game, as presented in the 
instructions, was that the player (participant) had the abil-
ity to send a spaceship to a distant planet rich with gold, 
called “the gold planet”, in order to search for gold. The 
gold they found was stored in a warehouse situated on the 
gold planet. Every 24 hours, all the gold acquired in the 
warehouse was taken to earth by a cargo spaceship, and the 
warehouse became empty and ready again to store gold. This 
happened automatically, and participants received a message 
stating that the warehouse had been emptied every day on 
their first daily entry (defined as the first entry following 
5:00 am). Participants were instructed that the gold trans-
ferred to earth will be converted to real money they would 
receive at the end of the game. They were also informed 
that the warehouse could get full, and once that happened, 
they could no longer store gold in the warehouse until the 
next day, effectively rendering the gold worthless for the 
rest of the day (this was the outcome devaluation manipula-
tion). To further increase participants’ motivation to acquire 
gold, they were told that every few days we would conduct 
a lottery for additional money prizes between participants 
who finished their participation and that their chances to win 
were directly proportional to the amount of gold they man-
aged to acquire throughout the task. Note that some of the 
features in this task, particularly the reward and manipula-
tions on its value, were inspired by a previous task (Gillsn, 
Otto, et al.,2015b).

Participants were assigned to three experimental groups 
varied in their training duration, i.e., the number of training 
days they had before the outcome devaluation manipulation, 
and in the number and schedule of their control manipula-
tions (see details below in Experimental groups). To avoid 
any self-selection bias or different expectations regarding the 
task, all participants, regardless of their group assignment, 
were told that the experiment duration is not predetermined 
and that it may last between a few days and up to a month. 
Consistently, participants in all groups received exactly the 
same instructions.

Task structure  To send their spaceship to the gold planet, 
participants had to enter the app by pressing its icon on their 
smartphone (Fig. 1a). The app icon was effectively the stim-
ulus/cue associated with an action and an outcome. After 
pressing the app, right as it opened, participants were pre-
sented with a quick animation of their spaceship landing on 
the gold planet along with an indication of a one-gold-unit 
cost they had to pay for each space travel to the gold planet 
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(namely, for each entry). The cost was added to prevent par-
ticipants from intentionally entering the app “just for fun” 
in periods when the outcome had lost its value (i.e., when 
the warehouse was full) and thereby to allow us to interpret 
these entries as habitual (outcome-insensitive) responses.

Following their entry to the app, participants had to 
remove a layer of ice from the ground before they could 
look for gold. To this end they were required to press on the 
lower half of the screen followed by a press on the upper 
half of the screen. Thus, together with the initial press on 
the app icon (to enter the app), participants had to perform 
a three-press sequence. This was mainly done to represent 
real-life habitual responding, which is typically composed of 
a sequence of actions rather than a single one, and to allow 
us to track partial responses (but since partial responses were 
highly uncommon, we did not analyze them). After complet-
ing the sequence pressing, a short animation of a bulldozer 
digging in the ground was presented, followed by a presenta-
tion of the outcome, and shortly after, the message “see you 
next time” appeared. The outcome was either 15 units of 
gold or a worthless piece of rock. We used a variable-ratio 
reinforcement schedule, where on each entry the chance of 
finding gold was 1/3 (VR-3). To retain participants’ engage-
ment, in the case of not finding gold for six consecutive 
entries, the seventh entry was guaranteed to yield gold. In 
addition, we fixed the first daily entry on each day to result 
in a rock and the second to result in finding gold. We ration-
alized that this pattern would motivate participants to enter 
at least twice on their first daily interaction with the app. 
A typical trial/entry lasted around 8–10 seconds. Notably, 
participants were completely free to determine their pattern 
of engagement with the app, that is, they were free to enter 
the app whenever and as much as they liked 24/7 throughout 
the entire duration of the experiment. The only requirement 
we imposed in order to stay in the game was to enter at least 
five times a day. To constantly remind participants of this 
requirement, they received two reminder emails on each day 
of the experiment (at 8:00 am and 6:00 pm).

Outcome devaluation and control manipulations  On the 
third or tenth day of the experiment (depending on the 
experimental group; see details below), we introduced the 
outcome devaluation manipulation (Fig. 1b). On their fifth 
daily entry, participants were presented with an image of the 
warehouse completely filled with gold boxes, along with a 
message stating that the warehouse is full and that it could 
not store any more gold until it is emptied again (by the 
cargo spaceship). This meant that the outcome was devalued 
until the next day. A day before and a day after the outcome 
devaluation manipulation, we employed a control manipula-
tion where a message (shown on the fifth daily entry) stating 
that the warehouse is half full was presented, along with an 
image of a partially full warehouse. This meant that gold 

could still be accumulated and thus retained its value. To 
ensure that participants paid attention to the manipulation 
message, they were required to enter a (random) three-letter 
code to proceed. In the event that participants exited the 
application without confirming the message, it reappeared 
upon their next entry, and so on, until confirmed by the 
participant.

The number of entries following the introduction of the 
outcome devaluation and control manipulations was used 
as our main dependent variable. To prevent the potentially 
confounding effects of the outcome presentation itself on the 
balance between goal-directed and habitual action control, 
we concealed the outcome. This occurred on each manipu-
lation day, starting from the third daily entry and continu-
ing until the next day. Concealing the outcome from the 
third entry was aimed to prevent, at least to some extent, a 
direct association between concealing the outcome and the 
outcome devaluation, as well as to habituate participants 
to concealed-outcome entries before any manipulation 
was induced. To implement this feature, as part of the task 
instructions, participants were informed that sometimes, due 
to bad weather conditions on the gold planet, they would not 
be able to see the outcome of their search (implemented as 
clouds covering relevant parts of the screen; see Fig. 1b). 
We emphasized that, other than not being able to view the 
outcome, everything else remained the same, including their 
chances of finding gold on each entry.

Manipulation check  At the instructions phase, participants 
were informed that sometimes when they entered the app to 
find gold, they might encounter a cave rich with gold, and 
that when that happened, they had 5 seconds during which 
they were able to collect gold piles (worth 15 units each, 
similar to the regular dug gold piles) by simply pressing 
on gold piles scattered across the screen. They were also 
instructed that each attempt to collect the gold inside the 
cave (i.e., each press) exerted a large 10-gold-unit cost. 
Inside the cave, there were 15 randomly positioned gold 
piles and 15 pieces of worthless rock. Participants encoun-
tered such caves immediately following each manipulation 
introduction (outcome devaluation and control manipula-
tions), that is, immediately after they had confirmed the mes-
sage about the state of the warehouse. We embedded this 
mini-task as a manipulation check for the outcome-devalua-
tion procedure. The cave was used as a different setting than 
the regular training, and we measured the number of gold 
piles participants collected in them as an indication of their 
awareness of the current outcome value.

Experimental groups  We varied the duration of the experi-
mental task (and thereby of the training) across the three 
experimental groups (Fig. 1c). The task lasted 4 days in the 
short training group and 11 days in each of two extensive 
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training groups. We initiated the experiment for the short 
training group exactly a week following the initiation of 
the experiment for the extensive training groups. The 7-day 
interval was determined so that participants in all groups 
undergo the manipulations on the same particular days.

In one of the two extensive training groups, we added 
control manipulations on days parallel to the three manipu-
lations in the short training group (i.e., days 2–4). This was 
done to account for the option that the mere encounter with 
“non-regular” trials only after a relatively long period (i.e., 
only in the second week) would exert its own confounding 
effects. This also enabled us to obtain direct comparable 
manipulation days with the short training group manipula-
tions, but without outcome devaluation.

Post‑experimental procedures

After completing the real-world free-operant task, we asked 
participants to perform an additional part on their personal 
computers. First, they underwent the two-step sequential 
decision-making task (Daw et al., 2011) to estimate their 
individual tendency to utilize MF and MB reinforcement 
learning strategies. These learning strategies were previ-
ously commonly referred to as proxies of habitual and goal-
directed action control, respectively. We adapted an online 
version of this task from the Experiment Factory Battery 
(Sochat et al., 2016). Briefly, in this task, participants could 
choose between two actions in a first state. Each first state 
action commonly (70% of the times) led to one of two pos-
sible second states and rarely (30% of the times) to the other 
in a respective manner (i.e., the common–rare probabilities 
are reversed between the two first state actions). In either of 
the second states, participants were required again to choose 
one of two actions (different pairs in the different second 
states) which could have led to winning a reward. Reward 
probabilities of the second states’ actions were gradually 
changed throughout the task. After completing this task, 
participants were asked to fill out a battery of psychologi-
cal questionnaires. The link for this part (two-step task and 
questionnaires) was sent to the participants after they had 
completed the real-world free-operant task on the following 
Friday at 8 am. We asked participants to complete it as soon 
as possible and no later than the following Monday.

Data analysis

All statistical analyses were carried out using R program-
ming language (R Core Team, R Foundation for Statistical 
Computing, Vienna, Austria, 2021) and Python program-
ming language (Van Rossum et al., 2009). The latter was 
also used for data extraction and parsing.

Main analysis

To test the effect of training duration on habit formation 
(as estimated by sensitivity to outcome devaluation) we ran 
a full mixed-model Poisson regression, implemented using 
the glmer function from the lme4 package in R (Bates et al., 
2015). In the model, we entered the number of entries fol-
lowing manipulations as the dependent variable. As inde-
pendent variables, we entered the group and the manipu-
lation (that is, the outcome devaluation and the control 
manipulations induced the day before and the day after that) 
factors and their interaction to the model. Participant was 
entered as a random effect. Accordingly, the regression was 
formulated as follows (in lme4 syntax):

Note that unlike the model conceptualized in the prereg-
istration, this model does not include a random slope since 
there is only one value per within-participant condition, a 
case for which a random intercept model should be used. 
Since running the Poisson regression resulted in a large over-
dispersion (tested using the model’s sum of squared Pearson 
residuals, as implemented by the performance R package; 
Bolker, 2017; Lüdecke et al., 2021), we tested which of three 
models aimed to handle over-dispersed count data ( Bolker, 
2022) would best fit our data. The three candidate models, 
implemented using the glmmTMB R package (Brooks et al., 
n.d.), were an observation-level random effects model, a 
negative binomial mixed-model regression with a quadric 
parameterization of the variance (NB2), and a similar model 
with a linear (“quasi-Poisson”) parameterization (NB1). For 
model comparison, we used LOOCV and chose the model 
with the lowest mean squared error (MSE).

We also tested the hypothesis that the proportion of partici-
pants without a single habitual entry (“utterly goal-directed 
participants”) would be larger following a short training versus 
extensive training by comparing these proportions between the 
short and each of the extensive training groups using a two-
proportion z-test (with Yates continuity correction).

Calculating and validating a behavioral adaptation 
index

To test the involvement of other factors in habit formation/
expression, we calculated an individual behavioral adapta-
tion index, which measures the relative change in respond-
ing following outcome devaluation for each participant. As 
preregistered, the index was formulated as follows:

entries ∼ manipulation ∗ group + (1|participant)

√

�valued −

√

devalued
√

�valued +

√

devalued
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This individual behavioral adaptation index measure was 
calculated by first averaging the number of entries on the 
(control) pre- and post-outcome devaluation days (i.e., when 
the outcome retained its value) in an attempt to capture a 
potential general reduction in engagement rates. We then 
transformed the data by calculating the square root of the 
number of entries on the (averaged) valued days and the 
devalued day to assign less weight to highly inflated numbers 
(and larger relative weight to small numbers). This index 
ranges from −1 to 1, where 1 represents no habitual entries 
(i.e., “absolute” sensitivity to outcome devaluation), and 
values around 0 indicate habitual responding (i.e., “abso-
lute” insensitivity to outcome devaluation). Relatively large 
negative values, which are conceptually irrational, were not 
present in our data.

We used a t-test to compare the calculated behavioral 
adaptation index (see “Results") between the two exten-
sive training groups. As there was no significant difference 
between the two groups, we collapsed their data together 
for all subsequent analyses relying on this index. We refer 
to this merged group as the combined extensive training 
group. We used a t-test to compare the behavioral adapta-
tion index between the short and the combined extensive 
training groups. Note that (as stated in our preregistration) 
as opposed to the regression analysis on the raw entry data, 
this analysis was not a part of the main confirmatory analysis 
of the emergence of habits as a function of training duration. 
Rather, this analysis was aimed to examine how the behav-
ioral adaptation index, that we formulated in order to create 
a single value indicator of individual habit expression, is 
different between groups with different training duration. To 
further test this index and characterize the data by identify-
ing latent subgroups within each training group, we ran a 
finite mixture modelling analysis using the Flexmix R pack-
age (Leisch, 2004) on this measure. We ran the model using 
k = 1 or 2 clusters and considered the number of clusters 
(i.e., subgroups) that yielded the lowest Bayesian informa-
tion criterion (BIC) as the number of underlying latent sub-
groups that most likely gave rise to the data in each group.

Engagement and habit formation

To test whether baseline engagement rates were differen-
tially associated with habit expression following short versus 
extensive training, we extracted the lower and upper quar-
tiles of the data according to the number of entries following 
the control manipulation (i.e., warehouse was half full) on 
the day before outcome devaluation. Note that the extraction 
was done separately within each group, but we verified that 
the results maintained the same pattern when the extrac-
tion was performed across all participants together. We ran 
a rank-based regression using the Rfit package (Kloke, 2012) 

on the behavioral adaptation index as the dependent variable, 
the group and quartile (upper vs. lower) factors, and their 
interaction, as independent variables.

We also used a rank-based regression model to test the 
effects of the average daily amount and density (with respect 
to the number of entries) of participants’ self-initiated ses-
sions (see Results for details on how these measures were 
inferred). These two measures along with group and all pos-
sible interactions were entered as independent variables and 
the behavioral adaptation index as the dependent measure. 
Note that to have more than only one “regular” training day 
(namely, with no manipulations) in the short training group, 
we included the control manipulation days in the calculation 
of the session indices. We made sure this had not affected 
our findings by running the same analysis on self-initiated 
session indices calculated after omitting all manipulation 
days (see supplementary materials).

Finally, we examined whether individual differences in 
the number of entries to the app on the first day and the 
average number of entries across all task days (except for the 
outcome devaluation day) were associated with habit expres-
sion (tested separately for each of the entry measure). For 
this purpose, we used a one-sided Spearman correlation test 
between each entry measure and the behavioral adaptation 
index. As stated in our preregistration, this was done only 
for participants in the extensive training group, mainly as 
the average number of daily entries measure relies on more 
data. Nevertheless, we accompanied this analysis with an 
exploratory analysis. For this analysis, we used the entire 
dataset and ran a rank-based regression on the behavioral 
adaptation index for each of the entry measures as a factor 
along with group and their interaction.

Note that for each rank-based regression involving con-
tinuous independent variables, we first normalized the data 
and coded the short training group as −1 and the (combined) 
extensive training group as 1 (effect coding). Another thing 
to note is that the data used for quantifying some of the 
engagement aspects we targeted (e.g., the baseline engage-
ment rates from which we extracted the lower and upper 
quartiles) was also used in part for the behavioral adaptation 
index calculation. Thus, while conceptually (apart from the 
case of zero entries) the behavioral adaptation index was 
free to go in either direction regardless of the engagement 
measure value, they should not be viewed as completely free 
of inherent structural dependency.

Manipulation checks

To test that participants indeed understood the manipu-
lations, we conducted two tests. First, we calculated the 
average number of gold pieces collected in the cave follow-
ing the control manipulations in the days before and after 
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outcome devaluation across all participants and compared 
it with the gold collected following outcome devaluation 
using a paired-sample t-test. To confirm that such effects 
were similar across groups, we also ran a mixed-model 
repeated-measures ANOVA on the mean number of gold 
piles collected with group as a between-participant factor 
and the preceding manipulation type (outcome devalua-
tion or control) as a within-participant factor. Second, we 
performed a paired-samples t-test across all participants 
to compare their engagement with the app on the outcome 
devaluation day and on the subsequent day to verify that 
in general it went up again once the outcome had regained 
its value. The measure used for this test was the square 
root of the relative proportion of entries committed fol-
lowing each manipulation day (that is, the day of outcome 
devaluation and the adjacent before and after days). This 
measure normalizes the entries within each participant in 
an equivalent way to our main behavioral adaptation index 
(if we would have used the same further calculation of the 
relative difference; see above). We also repeated this test 
separately within each group. The results of this analysis 
are described in the supplementary materials.

MF and MB reinforcement learning strategies 
and habit formation

To verify participants’ engagement in the two-step task, we 
applied the exclusion criteria used by Gillan et al. (Gillan, 
Otto, et al., 2015b), who also used a variant of the two-step 
task online. Specifically, we excluded two participants who 
missed more than 10% of the trials and two participants due 
to implausibly fast response time (−2 SD from the group 
mean). Note that we also set a very slow reaction time (+2 
SD) and pressing on the same key > 90% of the times as 
exclusion criteria, but these were not met by any participant. 
To test the relationship between MB and MF action control 
as inferred from the two-step, along with other parameters 
of interest (learning rate and perseverance), we fitted a full 
reinforcement learning computational model based on tran-
sitions, rewards, and participants’ choices in the two-step 
task. We formulated our computational model as a variation 
of the model used by Daw et al. (2011), by which the level 
of MB and MF strategies employed by each participant are 
estimated, with similar adaptations as those implemented 
by Sharp et al. (2016) with respect to the within-participant-
level part of the model (see a full description of the model in 
the supplementary materials). We estimated and extracted 
the following parameters for each participant: reliance on 
MB and MF learning strategies at the first stage, reliance 
on MF learning strategy on the second stage, persever-
ance, and learning rate. The computational model param-
eters were estimated through the No-U-Turn sampler-based 

Hamiltonian Monte Carlo as implemented in the Stan (Stan 
Development Team, 2021) Bayesian inference engine. We 
then entered each of the extracted parameters as an inde-
pendent variable along with group and their interaction to 
a ranked-based regression, with the behavioral adaptation 
index as the dependent variable. Note that the analysis of 
the MF and MB parameters deviated from the preregistration 
and is therefore considered exploratory (for the method and 
results of the originally planned analysis as well as details on 
the deviations from it, see supplementary materials).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​3758/​s13428-​023-​02263-6.
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